@inproceedings{hwang-etal-2022-event,
title = "Event-Event Relation Extraction using Probabilistic Box Embedding",
author = "Hwang, EunJeong and
Lee, Jay-Yoon and
Yang, Tianyi and
Patel, Dhruvesh and
Zhang, Dongxu and
McCallum, Andrew",
editor = "Muresan, Smaranda and
Nakov, Preslav and
Villavicencio, Aline",
booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.acl-short.26/",
doi = "10.18653/v1/2022.acl-short.26",
pages = "235--244",
abstract = "To understand a story with multiple events, it is important to capture the proper relations across these events. However, existing event relation extraction (ERE) framework regards it as a multi-class classification task and do not guarantee any coherence between different relation types, such as anti-symmetry. If a phone line {\textquotedblleft}died{\textquotedblright} after {\textquotedblleft}storm{\textquotedblright}, then it is obvious that the {\textquotedblleft}storm{\textquotedblright} happened before the {\textquotedblleft}died{\textquotedblright}. Current framework of event relation extraction do not guarantee this coherence and thus enforces it via constraint loss function (Wang et al., 2020). In this work, we propose to modify the underlying ERE model to guarantee coherence by representing each event as a box representation (BERE) without applying explicit constraints. From our experiments, BERE also shows stronger conjunctive constraint satisfaction while performing on par or better in F1 compared to previous models with constraint injection."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hwang-etal-2022-event">
<titleInfo>
<title>Event-Event Relation Extraction using Probabilistic Box Embedding</title>
</titleInfo>
<name type="personal">
<namePart type="given">EunJeong</namePart>
<namePart type="family">Hwang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jay-Yoon</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tianyi</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dhruvesh</namePart>
<namePart type="family">Patel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dongxu</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrew</namePart>
<namePart type="family">McCallum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Smaranda</namePart>
<namePart type="family">Muresan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aline</namePart>
<namePart type="family">Villavicencio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>To understand a story with multiple events, it is important to capture the proper relations across these events. However, existing event relation extraction (ERE) framework regards it as a multi-class classification task and do not guarantee any coherence between different relation types, such as anti-symmetry. If a phone line “died” after “storm”, then it is obvious that the “storm” happened before the “died”. Current framework of event relation extraction do not guarantee this coherence and thus enforces it via constraint loss function (Wang et al., 2020). In this work, we propose to modify the underlying ERE model to guarantee coherence by representing each event as a box representation (BERE) without applying explicit constraints. From our experiments, BERE also shows stronger conjunctive constraint satisfaction while performing on par or better in F1 compared to previous models with constraint injection.</abstract>
<identifier type="citekey">hwang-etal-2022-event</identifier>
<identifier type="doi">10.18653/v1/2022.acl-short.26</identifier>
<location>
<url>https://aclanthology.org/2022.acl-short.26/</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>235</start>
<end>244</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Event-Event Relation Extraction using Probabilistic Box Embedding
%A Hwang, EunJeong
%A Lee, Jay-Yoon
%A Yang, Tianyi
%A Patel, Dhruvesh
%A Zhang, Dongxu
%A McCallum, Andrew
%Y Muresan, Smaranda
%Y Nakov, Preslav
%Y Villavicencio, Aline
%S Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F hwang-etal-2022-event
%X To understand a story with multiple events, it is important to capture the proper relations across these events. However, existing event relation extraction (ERE) framework regards it as a multi-class classification task and do not guarantee any coherence between different relation types, such as anti-symmetry. If a phone line “died” after “storm”, then it is obvious that the “storm” happened before the “died”. Current framework of event relation extraction do not guarantee this coherence and thus enforces it via constraint loss function (Wang et al., 2020). In this work, we propose to modify the underlying ERE model to guarantee coherence by representing each event as a box representation (BERE) without applying explicit constraints. From our experiments, BERE also shows stronger conjunctive constraint satisfaction while performing on par or better in F1 compared to previous models with constraint injection.
%R 10.18653/v1/2022.acl-short.26
%U https://aclanthology.org/2022.acl-short.26/
%U https://doi.org/10.18653/v1/2022.acl-short.26
%P 235-244
Markdown (Informal)
[Event-Event Relation Extraction using Probabilistic Box Embedding](https://aclanthology.org/2022.acl-short.26/) (Hwang et al., ACL 2022)
ACL
- EunJeong Hwang, Jay-Yoon Lee, Tianyi Yang, Dhruvesh Patel, Dongxu Zhang, and Andrew McCallum. 2022. Event-Event Relation Extraction using Probabilistic Box Embedding. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 235–244, Dublin, Ireland. Association for Computational Linguistics.