@inproceedings{lai-etal-2022-multilingual,
title = "Multilingual Pre-training with Language and Task Adaptation for Multilingual Text Style Transfer",
author = "Lai, Huiyuan and
Toral, Antonio and
Nissim, Malvina",
editor = "Muresan, Smaranda and
Nakov, Preslav and
Villavicencio, Aline",
booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.acl-short.29",
doi = "10.18653/v1/2022.acl-short.29",
pages = "262--271",
abstract = "We exploit the pre-trained seq2seq model mBART for multilingual text style transfer. Using machine translated data as well as gold aligned English sentences yields state-of-the-art results in the three target languages we consider. Besides, in view of the general scarcity of parallel data, we propose a modular approach for multilingual formality transfer, which consists of two training strategies that target adaptation to both language and task. Our approach achieves competitive performance without monolingual task-specific parallel data and can be applied to other style transfer tasks as well as to other languages.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lai-etal-2022-multilingual">
<titleInfo>
<title>Multilingual Pre-training with Language and Task Adaptation for Multilingual Text Style Transfer</title>
</titleInfo>
<name type="personal">
<namePart type="given">Huiyuan</namePart>
<namePart type="family">Lai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Antonio</namePart>
<namePart type="family">Toral</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Malvina</namePart>
<namePart type="family">Nissim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Smaranda</namePart>
<namePart type="family">Muresan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aline</namePart>
<namePart type="family">Villavicencio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We exploit the pre-trained seq2seq model mBART for multilingual text style transfer. Using machine translated data as well as gold aligned English sentences yields state-of-the-art results in the three target languages we consider. Besides, in view of the general scarcity of parallel data, we propose a modular approach for multilingual formality transfer, which consists of two training strategies that target adaptation to both language and task. Our approach achieves competitive performance without monolingual task-specific parallel data and can be applied to other style transfer tasks as well as to other languages.</abstract>
<identifier type="citekey">lai-etal-2022-multilingual</identifier>
<identifier type="doi">10.18653/v1/2022.acl-short.29</identifier>
<location>
<url>https://aclanthology.org/2022.acl-short.29</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>262</start>
<end>271</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multilingual Pre-training with Language and Task Adaptation for Multilingual Text Style Transfer
%A Lai, Huiyuan
%A Toral, Antonio
%A Nissim, Malvina
%Y Muresan, Smaranda
%Y Nakov, Preslav
%Y Villavicencio, Aline
%S Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F lai-etal-2022-multilingual
%X We exploit the pre-trained seq2seq model mBART for multilingual text style transfer. Using machine translated data as well as gold aligned English sentences yields state-of-the-art results in the three target languages we consider. Besides, in view of the general scarcity of parallel data, we propose a modular approach for multilingual formality transfer, which consists of two training strategies that target adaptation to both language and task. Our approach achieves competitive performance without monolingual task-specific parallel data and can be applied to other style transfer tasks as well as to other languages.
%R 10.18653/v1/2022.acl-short.29
%U https://aclanthology.org/2022.acl-short.29
%U https://doi.org/10.18653/v1/2022.acl-short.29
%P 262-271
Markdown (Informal)
[Multilingual Pre-training with Language and Task Adaptation for Multilingual Text Style Transfer](https://aclanthology.org/2022.acl-short.29) (Lai et al., ACL 2022)
ACL