@inproceedings{papadopoulos-korfiatis-etal-2022-primock57,
title = "{P}ri{M}ock57: A Dataset Of Primary Care Mock Consultations",
author = "Papadopoulos Korfiatis, Alex and
Moramarco, Francesco and
Sarac, Radmila and
Savkov, Aleksandar",
editor = "Muresan, Smaranda and
Nakov, Preslav and
Villavicencio, Aline",
booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.acl-short.65",
doi = "10.18653/v1/2022.acl-short.65",
pages = "588--598",
abstract = "Recent advances in Automatic Speech Recognition (ASR) have made it possible to reliably produce automatic transcripts of clinician-patient conversations. However, access to clinical datasets is heavily restricted due to patient privacy, thus slowing down normal research practices. We detail the development of a public access, high quality dataset comprising of 57 mocked primary care consultations, including audio recordings, their manual utterance-level transcriptions, and the associated consultation notes. Our work illustrates how the dataset can be used as a benchmark for conversational medical ASR as well as consultation note generation from transcripts.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="papadopoulos-korfiatis-etal-2022-primock57">
<titleInfo>
<title>PriMock57: A Dataset Of Primary Care Mock Consultations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alex</namePart>
<namePart type="family">Papadopoulos Korfiatis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Francesco</namePart>
<namePart type="family">Moramarco</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Radmila</namePart>
<namePart type="family">Sarac</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aleksandar</namePart>
<namePart type="family">Savkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Smaranda</namePart>
<namePart type="family">Muresan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aline</namePart>
<namePart type="family">Villavicencio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recent advances in Automatic Speech Recognition (ASR) have made it possible to reliably produce automatic transcripts of clinician-patient conversations. However, access to clinical datasets is heavily restricted due to patient privacy, thus slowing down normal research practices. We detail the development of a public access, high quality dataset comprising of 57 mocked primary care consultations, including audio recordings, their manual utterance-level transcriptions, and the associated consultation notes. Our work illustrates how the dataset can be used as a benchmark for conversational medical ASR as well as consultation note generation from transcripts.</abstract>
<identifier type="citekey">papadopoulos-korfiatis-etal-2022-primock57</identifier>
<identifier type="doi">10.18653/v1/2022.acl-short.65</identifier>
<location>
<url>https://aclanthology.org/2022.acl-short.65</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>588</start>
<end>598</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T PriMock57: A Dataset Of Primary Care Mock Consultations
%A Papadopoulos Korfiatis, Alex
%A Moramarco, Francesco
%A Sarac, Radmila
%A Savkov, Aleksandar
%Y Muresan, Smaranda
%Y Nakov, Preslav
%Y Villavicencio, Aline
%S Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F papadopoulos-korfiatis-etal-2022-primock57
%X Recent advances in Automatic Speech Recognition (ASR) have made it possible to reliably produce automatic transcripts of clinician-patient conversations. However, access to clinical datasets is heavily restricted due to patient privacy, thus slowing down normal research practices. We detail the development of a public access, high quality dataset comprising of 57 mocked primary care consultations, including audio recordings, their manual utterance-level transcriptions, and the associated consultation notes. Our work illustrates how the dataset can be used as a benchmark for conversational medical ASR as well as consultation note generation from transcripts.
%R 10.18653/v1/2022.acl-short.65
%U https://aclanthology.org/2022.acl-short.65
%U https://doi.org/10.18653/v1/2022.acl-short.65
%P 588-598
Markdown (Informal)
[PriMock57: A Dataset Of Primary Care Mock Consultations](https://aclanthology.org/2022.acl-short.65) (Papadopoulos Korfiatis et al., ACL 2022)
ACL
- Alex Papadopoulos Korfiatis, Francesco Moramarco, Radmila Sarac, and Aleksandar Savkov. 2022. PriMock57: A Dataset Of Primary Care Mock Consultations. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 588–598, Dublin, Ireland. Association for Computational Linguistics.