@inproceedings{li-etal-2022-rfbfn,
title = "{RFBFN}: A Relation-First Blank Filling Network for Joint Relational Triple Extraction",
author = "Li, Zhe and
Fu, Luoyi and
Wang, Xinbing and
Zhang, Haisong and
Zhou, Chenghu",
editor = "Louvan, Samuel and
Madotto, Andrea and
Madureira, Brielen",
booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.acl-srw.2",
doi = "10.18653/v1/2022.acl-srw.2",
pages = "10--20",
abstract = "Joint relational triple extraction from unstructured text is an important task in information extraction. However, most existing works either ignore the semantic information of relations or predict subjects and objects sequentially. To address the issues, we introduce a new blank filling paradigm for the task, and propose a relation-first blank filling network (RFBFN). Specifically, we first detect potential relations maintained in the text to aid the following entity pair extraction. Then, we transform relations into relation templates with blanks which contain the fine-grained semantic representation of the relations. Finally, corresponding subjects and objects are extracted simultaneously by filling the blanks. We evaluate the proposed model on public benchmark datasets. Experimental results show our model outperforms current state-of-the-art methods. The source code of our work is available at: \url{https://github.com/lizhe2016/RFBFN}.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-etal-2022-rfbfn">
<titleInfo>
<title>RFBFN: A Relation-First Blank Filling Network for Joint Relational Triple Extraction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zhe</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luoyi</namePart>
<namePart type="family">Fu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xinbing</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Haisong</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chenghu</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Samuel</namePart>
<namePart type="family">Louvan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrea</namePart>
<namePart type="family">Madotto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Brielen</namePart>
<namePart type="family">Madureira</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Joint relational triple extraction from unstructured text is an important task in information extraction. However, most existing works either ignore the semantic information of relations or predict subjects and objects sequentially. To address the issues, we introduce a new blank filling paradigm for the task, and propose a relation-first blank filling network (RFBFN). Specifically, we first detect potential relations maintained in the text to aid the following entity pair extraction. Then, we transform relations into relation templates with blanks which contain the fine-grained semantic representation of the relations. Finally, corresponding subjects and objects are extracted simultaneously by filling the blanks. We evaluate the proposed model on public benchmark datasets. Experimental results show our model outperforms current state-of-the-art methods. The source code of our work is available at: https://github.com/lizhe2016/RFBFN.</abstract>
<identifier type="citekey">li-etal-2022-rfbfn</identifier>
<identifier type="doi">10.18653/v1/2022.acl-srw.2</identifier>
<location>
<url>https://aclanthology.org/2022.acl-srw.2</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>10</start>
<end>20</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T RFBFN: A Relation-First Blank Filling Network for Joint Relational Triple Extraction
%A Li, Zhe
%A Fu, Luoyi
%A Wang, Xinbing
%A Zhang, Haisong
%A Zhou, Chenghu
%Y Louvan, Samuel
%Y Madotto, Andrea
%Y Madureira, Brielen
%S Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F li-etal-2022-rfbfn
%X Joint relational triple extraction from unstructured text is an important task in information extraction. However, most existing works either ignore the semantic information of relations or predict subjects and objects sequentially. To address the issues, we introduce a new blank filling paradigm for the task, and propose a relation-first blank filling network (RFBFN). Specifically, we first detect potential relations maintained in the text to aid the following entity pair extraction. Then, we transform relations into relation templates with blanks which contain the fine-grained semantic representation of the relations. Finally, corresponding subjects and objects are extracted simultaneously by filling the blanks. We evaluate the proposed model on public benchmark datasets. Experimental results show our model outperforms current state-of-the-art methods. The source code of our work is available at: https://github.com/lizhe2016/RFBFN.
%R 10.18653/v1/2022.acl-srw.2
%U https://aclanthology.org/2022.acl-srw.2
%U https://doi.org/10.18653/v1/2022.acl-srw.2
%P 10-20
Markdown (Informal)
[RFBFN: A Relation-First Blank Filling Network for Joint Relational Triple Extraction](https://aclanthology.org/2022.acl-srw.2) (Li et al., ACL 2022)
ACL