@inproceedings{liang-etal-2022-low,
title = "Low Resource Causal Event Detection from Biomedical Literature",
author = "Liang, Zhengzhong and
Noriega-Atala, Enrique and
Morrison, Clayton and
Surdeanu, Mihai",
editor = "Demner-Fushman, Dina and
Cohen, Kevin Bretonnel and
Ananiadou, Sophia and
Tsujii, Junichi",
booktitle = "Proceedings of the 21st Workshop on Biomedical Language Processing",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.bionlp-1.24/",
doi = "10.18653/v1/2022.bionlp-1.24",
pages = "252--263",
abstract = "Recognizing causal precedence relations among the chemical interactions in biomedical literature is crucial to understanding the underlying biological mechanisms. However, detecting such causal relation can be hard because: (1) many times, such causal relations among events are not explicitly expressed by certain phrases but implicitly implied by very diverse expressions in the text, and (2) annotating such causal relation detection datasets requires considerable expert knowledge and effort. In this paper, we propose a strategy to address both challenges by training neural models with in-domain pre-training and knowledge distillation. We show that, by using very limited amount of labeled data, and sufficient amount of unlabeled data, the neural models outperform previous baselines on the causal precedence detection task, and are ten times faster at inference compared to the BERT base model."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liang-etal-2022-low">
<titleInfo>
<title>Low Resource Causal Event Detection from Biomedical Literature</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zhengzhong</namePart>
<namePart type="family">Liang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Enrique</namePart>
<namePart type="family">Noriega-Atala</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Clayton</namePart>
<namePart type="family">Morrison</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mihai</namePart>
<namePart type="family">Surdeanu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 21st Workshop on Biomedical Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dina</namePart>
<namePart type="family">Demner-Fushman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="given">Bretonnel</namePart>
<namePart type="family">Cohen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sophia</namePart>
<namePart type="family">Ananiadou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recognizing causal precedence relations among the chemical interactions in biomedical literature is crucial to understanding the underlying biological mechanisms. However, detecting such causal relation can be hard because: (1) many times, such causal relations among events are not explicitly expressed by certain phrases but implicitly implied by very diverse expressions in the text, and (2) annotating such causal relation detection datasets requires considerable expert knowledge and effort. In this paper, we propose a strategy to address both challenges by training neural models with in-domain pre-training and knowledge distillation. We show that, by using very limited amount of labeled data, and sufficient amount of unlabeled data, the neural models outperform previous baselines on the causal precedence detection task, and are ten times faster at inference compared to the BERT base model.</abstract>
<identifier type="citekey">liang-etal-2022-low</identifier>
<identifier type="doi">10.18653/v1/2022.bionlp-1.24</identifier>
<location>
<url>https://aclanthology.org/2022.bionlp-1.24/</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>252</start>
<end>263</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Low Resource Causal Event Detection from Biomedical Literature
%A Liang, Zhengzhong
%A Noriega-Atala, Enrique
%A Morrison, Clayton
%A Surdeanu, Mihai
%Y Demner-Fushman, Dina
%Y Cohen, Kevin Bretonnel
%Y Ananiadou, Sophia
%Y Tsujii, Junichi
%S Proceedings of the 21st Workshop on Biomedical Language Processing
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F liang-etal-2022-low
%X Recognizing causal precedence relations among the chemical interactions in biomedical literature is crucial to understanding the underlying biological mechanisms. However, detecting such causal relation can be hard because: (1) many times, such causal relations among events are not explicitly expressed by certain phrases but implicitly implied by very diverse expressions in the text, and (2) annotating such causal relation detection datasets requires considerable expert knowledge and effort. In this paper, we propose a strategy to address both challenges by training neural models with in-domain pre-training and knowledge distillation. We show that, by using very limited amount of labeled data, and sufficient amount of unlabeled data, the neural models outperform previous baselines on the causal precedence detection task, and are ten times faster at inference compared to the BERT base model.
%R 10.18653/v1/2022.bionlp-1.24
%U https://aclanthology.org/2022.bionlp-1.24/
%U https://doi.org/10.18653/v1/2022.bionlp-1.24
%P 252-263
Markdown (Informal)
[Low Resource Causal Event Detection from Biomedical Literature](https://aclanthology.org/2022.bionlp-1.24/) (Liang et al., BioNLP 2022)
ACL