@inproceedings{mitrofan-pais-2022-improving,
title = "Improving {R}omanian {B}io{NER} Using a Biologically Inspired System",
author = "Mitrofan, Maria and
Pais, Vasile",
editor = "Demner-Fushman, Dina and
Cohen, Kevin Bretonnel and
Ananiadou, Sophia and
Tsujii, Junichi",
booktitle = "Proceedings of the 21st Workshop on Biomedical Language Processing",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.bionlp-1.30/",
doi = "10.18653/v1/2022.bionlp-1.30",
pages = "316--322",
abstract = "Recognition of named entities present in text is an important step towards information extraction and natural language understanding. This work presents a named entity recognition system for the Romanian biomedical domain. The system makes use of a new and extended version of SiMoNERo corpus, that is open sourced. Also, the best system is available for direct usage in the RELATE platform."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mitrofan-pais-2022-improving">
<titleInfo>
<title>Improving Romanian BioNER Using a Biologically Inspired System</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="family">Mitrofan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vasile</namePart>
<namePart type="family">Pais</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 21st Workshop on Biomedical Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dina</namePart>
<namePart type="family">Demner-Fushman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="given">Bretonnel</namePart>
<namePart type="family">Cohen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sophia</namePart>
<namePart type="family">Ananiadou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recognition of named entities present in text is an important step towards information extraction and natural language understanding. This work presents a named entity recognition system for the Romanian biomedical domain. The system makes use of a new and extended version of SiMoNERo corpus, that is open sourced. Also, the best system is available for direct usage in the RELATE platform.</abstract>
<identifier type="citekey">mitrofan-pais-2022-improving</identifier>
<identifier type="doi">10.18653/v1/2022.bionlp-1.30</identifier>
<location>
<url>https://aclanthology.org/2022.bionlp-1.30/</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>316</start>
<end>322</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Improving Romanian BioNER Using a Biologically Inspired System
%A Mitrofan, Maria
%A Pais, Vasile
%Y Demner-Fushman, Dina
%Y Cohen, Kevin Bretonnel
%Y Ananiadou, Sophia
%Y Tsujii, Junichi
%S Proceedings of the 21st Workshop on Biomedical Language Processing
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F mitrofan-pais-2022-improving
%X Recognition of named entities present in text is an important step towards information extraction and natural language understanding. This work presents a named entity recognition system for the Romanian biomedical domain. The system makes use of a new and extended version of SiMoNERo corpus, that is open sourced. Also, the best system is available for direct usage in the RELATE platform.
%R 10.18653/v1/2022.bionlp-1.30
%U https://aclanthology.org/2022.bionlp-1.30/
%U https://doi.org/10.18653/v1/2022.bionlp-1.30
%P 316-322
Markdown (Informal)
[Improving Romanian BioNER Using a Biologically Inspired System](https://aclanthology.org/2022.bionlp-1.30/) (Mitrofan & Pais, BioNLP 2022)
ACL