@inproceedings{pappas-etal-2022-data,
title = "Data Augmentation for Biomedical Factoid Question Answering",
author = "Pappas, Dimitris and
Malakasiotis, Prodromos and
Androutsopoulos, Ion",
editor = "Demner-Fushman, Dina and
Cohen, Kevin Bretonnel and
Ananiadou, Sophia and
Tsujii, Junichi",
booktitle = "Proceedings of the 21st Workshop on Biomedical Language Processing",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.bionlp-1.6",
doi = "10.18653/v1/2022.bionlp-1.6",
pages = "63--81",
abstract = "We study the effect of seven data augmentation (DA) methods in factoid question answering, focusing on the biomedical domain, where obtaining training instances is particularly difficult. We experiment with data from the BIOASQ challenge, which we augment with training instances obtained from an artificial biomedical machine reading comprehension dataset, or via back-translation, information retrieval, word substitution based on WORD2VEC embeddings, or masked language modeling, question generation, or extending the given passage with additional context. We show that DA can lead to very significant performance gains, even when using large pre-trained Transformers, contributing to a broader discussion of if/when DA benefits large pre-trained models. One of the simplest DA methods, WORD2VEC-based word substitution, performed best and is recommended. We release our artificial training instances and code.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pappas-etal-2022-data">
<titleInfo>
<title>Data Augmentation for Biomedical Factoid Question Answering</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dimitris</namePart>
<namePart type="family">Pappas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Prodromos</namePart>
<namePart type="family">Malakasiotis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ion</namePart>
<namePart type="family">Androutsopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 21st Workshop on Biomedical Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dina</namePart>
<namePart type="family">Demner-Fushman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="given">Bretonnel</namePart>
<namePart type="family">Cohen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sophia</namePart>
<namePart type="family">Ananiadou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We study the effect of seven data augmentation (DA) methods in factoid question answering, focusing on the biomedical domain, where obtaining training instances is particularly difficult. We experiment with data from the BIOASQ challenge, which we augment with training instances obtained from an artificial biomedical machine reading comprehension dataset, or via back-translation, information retrieval, word substitution based on WORD2VEC embeddings, or masked language modeling, question generation, or extending the given passage with additional context. We show that DA can lead to very significant performance gains, even when using large pre-trained Transformers, contributing to a broader discussion of if/when DA benefits large pre-trained models. One of the simplest DA methods, WORD2VEC-based word substitution, performed best and is recommended. We release our artificial training instances and code.</abstract>
<identifier type="citekey">pappas-etal-2022-data</identifier>
<identifier type="doi">10.18653/v1/2022.bionlp-1.6</identifier>
<location>
<url>https://aclanthology.org/2022.bionlp-1.6</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>63</start>
<end>81</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Data Augmentation for Biomedical Factoid Question Answering
%A Pappas, Dimitris
%A Malakasiotis, Prodromos
%A Androutsopoulos, Ion
%Y Demner-Fushman, Dina
%Y Cohen, Kevin Bretonnel
%Y Ananiadou, Sophia
%Y Tsujii, Junichi
%S Proceedings of the 21st Workshop on Biomedical Language Processing
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F pappas-etal-2022-data
%X We study the effect of seven data augmentation (DA) methods in factoid question answering, focusing on the biomedical domain, where obtaining training instances is particularly difficult. We experiment with data from the BIOASQ challenge, which we augment with training instances obtained from an artificial biomedical machine reading comprehension dataset, or via back-translation, information retrieval, word substitution based on WORD2VEC embeddings, or masked language modeling, question generation, or extending the given passage with additional context. We show that DA can lead to very significant performance gains, even when using large pre-trained Transformers, contributing to a broader discussion of if/when DA benefits large pre-trained models. One of the simplest DA methods, WORD2VEC-based word substitution, performed best and is recommended. We release our artificial training instances and code.
%R 10.18653/v1/2022.bionlp-1.6
%U https://aclanthology.org/2022.bionlp-1.6
%U https://doi.org/10.18653/v1/2022.bionlp-1.6
%P 63-81
Markdown (Informal)
[Data Augmentation for Biomedical Factoid Question Answering](https://aclanthology.org/2022.bionlp-1.6) (Pappas et al., BioNLP 2022)
ACL