@inproceedings{li-etal-2022-ji-qi,
title = "机器音译研究综述(Survey on Machine Transliteration)",
author = "Li, Zhuo and
Wang, Zhijuan and
Zhao, Xiaobing",
editor = "Sun, Maosong and
Liu, Yang and
Che, Wanxiang and
Feng, Yang and
Qiu, Xipeng and
Rao, Gaoqi and
Chen, Yubo",
booktitle = "Proceedings of the 21st Chinese National Conference on Computational Linguistics",
month = oct,
year = "2022",
address = "Nanchang, China",
publisher = "Chinese Information Processing Society of China",
url = "https://aclanthology.org/2022.ccl-1.29/",
pages = "317--332",
language = "zho",
abstract = "{\textquotedblleft}机器音译是基于语音相似性自动将文本从一种语言转换为另一种语言的过程,它是机器翻译的一个子任务,侧重于语音信息的翻译。音译后可知道源单词在另一种语言中的发音,使不熟悉源语言的人更容易理解该语言,有益于消除语言和拼写障碍。机器音译在多语言文本处理、语料库对齐、信息抽取等自然语言应用中发挥着重要作用。本文阐述了目前机器音译任务中存在的挑战,对主要的音译方法进行了剖析、分类和整理,对音译数据集进行了罗列汇总,并列出了常用的音译效果评价指标,最后对该领域目前存在的问题进行了说明并对音译学的未来进行了展望。本文以期对进入该领域的新人提供快速的入门指南,或供其他研究者参考。{\textquotedblright}"
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-etal-2022-ji-qi">
<titleInfo>
<title>机器音译研究综述(Survey on Machine Transliteration)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zhuo</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhijuan</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaobing</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">zho</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 21st Chinese National Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maosong</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Feng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xipeng</namePart>
<namePart type="family">Qiu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gaoqi</namePart>
<namePart type="family">Rao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yubo</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Chinese Information Processing Society of China</publisher>
<place>
<placeTerm type="text">Nanchang, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>“机器音译是基于语音相似性自动将文本从一种语言转换为另一种语言的过程,它是机器翻译的一个子任务,侧重于语音信息的翻译。音译后可知道源单词在另一种语言中的发音,使不熟悉源语言的人更容易理解该语言,有益于消除语言和拼写障碍。机器音译在多语言文本处理、语料库对齐、信息抽取等自然语言应用中发挥着重要作用。本文阐述了目前机器音译任务中存在的挑战,对主要的音译方法进行了剖析、分类和整理,对音译数据集进行了罗列汇总,并列出了常用的音译效果评价指标,最后对该领域目前存在的问题进行了说明并对音译学的未来进行了展望。本文以期对进入该领域的新人提供快速的入门指南,或供其他研究者参考。”</abstract>
<identifier type="citekey">li-etal-2022-ji-qi</identifier>
<location>
<url>https://aclanthology.org/2022.ccl-1.29/</url>
</location>
<part>
<date>2022-10</date>
<extent unit="page">
<start>317</start>
<end>332</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T 机器音译研究综述(Survey on Machine Transliteration)
%A Li, Zhuo
%A Wang, Zhijuan
%A Zhao, Xiaobing
%Y Sun, Maosong
%Y Liu, Yang
%Y Che, Wanxiang
%Y Feng, Yang
%Y Qiu, Xipeng
%Y Rao, Gaoqi
%Y Chen, Yubo
%S Proceedings of the 21st Chinese National Conference on Computational Linguistics
%D 2022
%8 October
%I Chinese Information Processing Society of China
%C Nanchang, China
%G zho
%F li-etal-2022-ji-qi
%X “机器音译是基于语音相似性自动将文本从一种语言转换为另一种语言的过程,它是机器翻译的一个子任务,侧重于语音信息的翻译。音译后可知道源单词在另一种语言中的发音,使不熟悉源语言的人更容易理解该语言,有益于消除语言和拼写障碍。机器音译在多语言文本处理、语料库对齐、信息抽取等自然语言应用中发挥着重要作用。本文阐述了目前机器音译任务中存在的挑战,对主要的音译方法进行了剖析、分类和整理,对音译数据集进行了罗列汇总,并列出了常用的音译效果评价指标,最后对该领域目前存在的问题进行了说明并对音译学的未来进行了展望。本文以期对进入该领域的新人提供快速的入门指南,或供其他研究者参考。”
%U https://aclanthology.org/2022.ccl-1.29/
%P 317-332
Markdown (Informal)
[机器音译研究综述(Survey on Machine Transliteration)](https://aclanthology.org/2022.ccl-1.29/) (Li et al., CCL 2022)
ACL
- Zhuo Li, Zhijuan Wang, and Xiaobing Zhao. 2022. 机器音译研究综述(Survey on Machine Transliteration). In Proceedings of the 21st Chinese National Conference on Computational Linguistics, pages 317–332, Nanchang, China. Chinese Information Processing Society of China.