@inproceedings{alhamed-etal-2022-predicting,
title = "Predicting Moments of Mood Changes Overtime from Imbalanced Social Media Data",
author = "Alhamed, Falwah and
Ive, Julia and
Specia, Lucia",
editor = "Zirikly, Ayah and
Atzil-Slonim, Dana and
Liakata, Maria and
Bedrick, Steven and
Desmet, Bart and
Ireland, Molly and
Lee, Andrew and
MacAvaney, Sean and
Purver, Matthew and
Resnik, Rebecca and
Yates, Andrew",
booktitle = "Proceedings of the Eighth Workshop on Computational Linguistics and Clinical Psychology",
month = jul,
year = "2022",
address = "Seattle, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.clpsych-1.23",
doi = "10.18653/v1/2022.clpsych-1.23",
pages = "239--244",
abstract = "Social media data have been used in research for many years to understand users{'} mental health. In this paper, using user-generated content we aim to achieve two goals: the first is detecting moments of mood change over time using timelines of users from Reddit. The second is predicting the degree of suicide risk as a user-level classification task. We used different approaches to address longitudinal modelling as well as the problem of the severely imbalanced dataset. Using BERT with undersampling techniques performed the best among other LSTM and basic random forests models for the first task. For the second task, extracting some features related to suicide from posts{'} text contributed to the overall performance improvement. Specifically, a number of suicide-related words in a post as a feature improved the accuracy by 17{\%}.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="alhamed-etal-2022-predicting">
<titleInfo>
<title>Predicting Moments of Mood Changes Overtime from Imbalanced Social Media Data</title>
</titleInfo>
<name type="personal">
<namePart type="given">Falwah</namePart>
<namePart type="family">Alhamed</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Ive</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Specia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Eighth Workshop on Computational Linguistics and Clinical Psychology</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ayah</namePart>
<namePart type="family">Zirikly</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dana</namePart>
<namePart type="family">Atzil-Slonim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="family">Liakata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bedrick</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bart</namePart>
<namePart type="family">Desmet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Molly</namePart>
<namePart type="family">Ireland</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrew</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sean</namePart>
<namePart type="family">MacAvaney</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthew</namePart>
<namePart type="family">Purver</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rebecca</namePart>
<namePart type="family">Resnik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrew</namePart>
<namePart type="family">Yates</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Seattle, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Social media data have been used in research for many years to understand users’ mental health. In this paper, using user-generated content we aim to achieve two goals: the first is detecting moments of mood change over time using timelines of users from Reddit. The second is predicting the degree of suicide risk as a user-level classification task. We used different approaches to address longitudinal modelling as well as the problem of the severely imbalanced dataset. Using BERT with undersampling techniques performed the best among other LSTM and basic random forests models for the first task. For the second task, extracting some features related to suicide from posts’ text contributed to the overall performance improvement. Specifically, a number of suicide-related words in a post as a feature improved the accuracy by 17%.</abstract>
<identifier type="citekey">alhamed-etal-2022-predicting</identifier>
<identifier type="doi">10.18653/v1/2022.clpsych-1.23</identifier>
<location>
<url>https://aclanthology.org/2022.clpsych-1.23</url>
</location>
<part>
<date>2022-07</date>
<extent unit="page">
<start>239</start>
<end>244</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Predicting Moments of Mood Changes Overtime from Imbalanced Social Media Data
%A Alhamed, Falwah
%A Ive, Julia
%A Specia, Lucia
%Y Zirikly, Ayah
%Y Atzil-Slonim, Dana
%Y Liakata, Maria
%Y Bedrick, Steven
%Y Desmet, Bart
%Y Ireland, Molly
%Y Lee, Andrew
%Y MacAvaney, Sean
%Y Purver, Matthew
%Y Resnik, Rebecca
%Y Yates, Andrew
%S Proceedings of the Eighth Workshop on Computational Linguistics and Clinical Psychology
%D 2022
%8 July
%I Association for Computational Linguistics
%C Seattle, USA
%F alhamed-etal-2022-predicting
%X Social media data have been used in research for many years to understand users’ mental health. In this paper, using user-generated content we aim to achieve two goals: the first is detecting moments of mood change over time using timelines of users from Reddit. The second is predicting the degree of suicide risk as a user-level classification task. We used different approaches to address longitudinal modelling as well as the problem of the severely imbalanced dataset. Using BERT with undersampling techniques performed the best among other LSTM and basic random forests models for the first task. For the second task, extracting some features related to suicide from posts’ text contributed to the overall performance improvement. Specifically, a number of suicide-related words in a post as a feature improved the accuracy by 17%.
%R 10.18653/v1/2022.clpsych-1.23
%U https://aclanthology.org/2022.clpsych-1.23
%U https://doi.org/10.18653/v1/2022.clpsych-1.23
%P 239-244
Markdown (Informal)
[Predicting Moments of Mood Changes Overtime from Imbalanced Social Media Data](https://aclanthology.org/2022.clpsych-1.23) (Alhamed et al., CLPsych 2022)
ACL