@inproceedings{lang-etal-2022-visually,
title = "Visually Grounded Interpretation of Noun-Noun Compounds in {E}nglish",
author = "Lang, Inga and
Plas, Lonneke and
Nissim, Malvina and
Gatt, Albert",
editor = "Chersoni, Emmanuele and
Hollenstein, Nora and
Jacobs, Cassandra and
Oseki, Yohei and
Pr{\'e}vot, Laurent and
Santus, Enrico",
booktitle = "Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.cmcl-1.3",
doi = "10.18653/v1/2022.cmcl-1.3",
pages = "23--35",
abstract = "Noun-noun compounds (NNCs) occur frequently in the English language. Accurate NNC interpretation, i.e. determining the implicit relationship between the constituents of a NNC, is crucial for the advancement of many natural language processing tasks. Until now, computational NNC interpretation has been limited to approaches involving linguistic representations only. However, much research suggests that grounding linguistic representations in vision or other modalities can increase performance on this and other tasks. Our work is a novel comparison of linguistic and visuo-linguistic representations for the task of NNC interpretation. We frame NNC interpretation as a relation classification task, evaluating on a large, relationally-annotated NNC dataset. We combine distributional word vectors with image vectors to investigate how visual information can help improve NNC interpretation systems. We find that adding visual vectors increases classification performance on our dataset in many cases.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lang-etal-2022-visually">
<titleInfo>
<title>Visually Grounded Interpretation of Noun-Noun Compounds in English</title>
</titleInfo>
<name type="personal">
<namePart type="given">Inga</namePart>
<namePart type="family">Lang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lonneke</namePart>
<namePart type="family">Plas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Malvina</namePart>
<namePart type="family">Nissim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Albert</namePart>
<namePart type="family">Gatt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emmanuele</namePart>
<namePart type="family">Chersoni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nora</namePart>
<namePart type="family">Hollenstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cassandra</namePart>
<namePart type="family">Jacobs</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yohei</namePart>
<namePart type="family">Oseki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Laurent</namePart>
<namePart type="family">Prévot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Enrico</namePart>
<namePart type="family">Santus</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Noun-noun compounds (NNCs) occur frequently in the English language. Accurate NNC interpretation, i.e. determining the implicit relationship between the constituents of a NNC, is crucial for the advancement of many natural language processing tasks. Until now, computational NNC interpretation has been limited to approaches involving linguistic representations only. However, much research suggests that grounding linguistic representations in vision or other modalities can increase performance on this and other tasks. Our work is a novel comparison of linguistic and visuo-linguistic representations for the task of NNC interpretation. We frame NNC interpretation as a relation classification task, evaluating on a large, relationally-annotated NNC dataset. We combine distributional word vectors with image vectors to investigate how visual information can help improve NNC interpretation systems. We find that adding visual vectors increases classification performance on our dataset in many cases.</abstract>
<identifier type="citekey">lang-etal-2022-visually</identifier>
<identifier type="doi">10.18653/v1/2022.cmcl-1.3</identifier>
<location>
<url>https://aclanthology.org/2022.cmcl-1.3</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>23</start>
<end>35</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Visually Grounded Interpretation of Noun-Noun Compounds in English
%A Lang, Inga
%A Plas, Lonneke
%A Nissim, Malvina
%A Gatt, Albert
%Y Chersoni, Emmanuele
%Y Hollenstein, Nora
%Y Jacobs, Cassandra
%Y Oseki, Yohei
%Y Prévot, Laurent
%Y Santus, Enrico
%S Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F lang-etal-2022-visually
%X Noun-noun compounds (NNCs) occur frequently in the English language. Accurate NNC interpretation, i.e. determining the implicit relationship between the constituents of a NNC, is crucial for the advancement of many natural language processing tasks. Until now, computational NNC interpretation has been limited to approaches involving linguistic representations only. However, much research suggests that grounding linguistic representations in vision or other modalities can increase performance on this and other tasks. Our work is a novel comparison of linguistic and visuo-linguistic representations for the task of NNC interpretation. We frame NNC interpretation as a relation classification task, evaluating on a large, relationally-annotated NNC dataset. We combine distributional word vectors with image vectors to investigate how visual information can help improve NNC interpretation systems. We find that adding visual vectors increases classification performance on our dataset in many cases.
%R 10.18653/v1/2022.cmcl-1.3
%U https://aclanthology.org/2022.cmcl-1.3
%U https://doi.org/10.18653/v1/2022.cmcl-1.3
%P 23-35
Markdown (Informal)
[Visually Grounded Interpretation of Noun-Noun Compounds in English](https://aclanthology.org/2022.cmcl-1.3) (Lang et al., CMCL 2022)
ACL