@inproceedings{futrell-2022-estimating,
title = "Estimating word co-occurrence probabilities from pretrained static embeddings using a log-bilinear model",
author = "Futrell, Richard",
editor = "Chersoni, Emmanuele and
Hollenstein, Nora and
Jacobs, Cassandra and
Oseki, Yohei and
Pr{\'e}vot, Laurent and
Santus, Enrico",
booktitle = "Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.cmcl-1.6",
doi = "10.18653/v1/2022.cmcl-1.6",
pages = "54--60",
abstract = "We investigate how to use pretrained static word embeddings to deliver improved estimates of bilexical co-occurrence probabilities: conditional probabilities of one word given a single other word in a specific relationship. Such probabilities play important roles in psycholinguistics, corpus linguistics, and usage-based cognitive modeling of language more generally. We propose a log-bilinear model taking pretrained vector representations of the two words as input, enabling generalization based on the distributional information contained in both vectors. We show that this model outperforms baselines in estimating probabilities of adjectives given nouns that they attributively modify, and probabilities of nominal direct objects given their head verbs, given limited training data in Arabic, English, Korean, and Spanish.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="futrell-2022-estimating">
<titleInfo>
<title>Estimating word co-occurrence probabilities from pretrained static embeddings using a log-bilinear model</title>
</titleInfo>
<name type="personal">
<namePart type="given">Richard</namePart>
<namePart type="family">Futrell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emmanuele</namePart>
<namePart type="family">Chersoni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nora</namePart>
<namePart type="family">Hollenstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cassandra</namePart>
<namePart type="family">Jacobs</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yohei</namePart>
<namePart type="family">Oseki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Laurent</namePart>
<namePart type="family">Prévot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Enrico</namePart>
<namePart type="family">Santus</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We investigate how to use pretrained static word embeddings to deliver improved estimates of bilexical co-occurrence probabilities: conditional probabilities of one word given a single other word in a specific relationship. Such probabilities play important roles in psycholinguistics, corpus linguistics, and usage-based cognitive modeling of language more generally. We propose a log-bilinear model taking pretrained vector representations of the two words as input, enabling generalization based on the distributional information contained in both vectors. We show that this model outperforms baselines in estimating probabilities of adjectives given nouns that they attributively modify, and probabilities of nominal direct objects given their head verbs, given limited training data in Arabic, English, Korean, and Spanish.</abstract>
<identifier type="citekey">futrell-2022-estimating</identifier>
<identifier type="doi">10.18653/v1/2022.cmcl-1.6</identifier>
<location>
<url>https://aclanthology.org/2022.cmcl-1.6</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>54</start>
<end>60</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Estimating word co-occurrence probabilities from pretrained static embeddings using a log-bilinear model
%A Futrell, Richard
%Y Chersoni, Emmanuele
%Y Hollenstein, Nora
%Y Jacobs, Cassandra
%Y Oseki, Yohei
%Y Prévot, Laurent
%Y Santus, Enrico
%S Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F futrell-2022-estimating
%X We investigate how to use pretrained static word embeddings to deliver improved estimates of bilexical co-occurrence probabilities: conditional probabilities of one word given a single other word in a specific relationship. Such probabilities play important roles in psycholinguistics, corpus linguistics, and usage-based cognitive modeling of language more generally. We propose a log-bilinear model taking pretrained vector representations of the two words as input, enabling generalization based on the distributional information contained in both vectors. We show that this model outperforms baselines in estimating probabilities of adjectives given nouns that they attributively modify, and probabilities of nominal direct objects given their head verbs, given limited training data in Arabic, English, Korean, and Spanish.
%R 10.18653/v1/2022.cmcl-1.6
%U https://aclanthology.org/2022.cmcl-1.6
%U https://doi.org/10.18653/v1/2022.cmcl-1.6
%P 54-60
Markdown (Informal)
[Estimating word co-occurrence probabilities from pretrained static embeddings using a log-bilinear model](https://aclanthology.org/2022.cmcl-1.6) (Futrell, CMCL 2022)
ACL