@inproceedings{das-balke-2022-quantifying,
title = "Quantifying Bias from Decoding Techniques in Natural Language Generation",
author = "Das, Mayukh and
Balke, Wolf Tilo",
editor = "Calzolari, Nicoletta and
Huang, Chu-Ren and
Kim, Hansaem and
Pustejovsky, James and
Wanner, Leo and
Choi, Key-Sun and
Ryu, Pum-Mo and
Chen, Hsin-Hsi and
Donatelli, Lucia and
Ji, Heng and
Kurohashi, Sadao and
Paggio, Patrizia and
Xue, Nianwen and
Kim, Seokhwan and
Hahm, Younggyun and
He, Zhong and
Lee, Tony Kyungil and
Santus, Enrico and
Bond, Francis and
Na, Seung-Hoon",
booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
month = oct,
year = "2022",
address = "Gyeongju, Republic of Korea",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2022.coling-1.112/",
pages = "1311--1323",
abstract = "Natural language generation (NLG) models can propagate social bias towards particular demography. Though several studies investigated bias from data and model, NLG task distinctively uses stochastic decoder that can positively or negatively impact the bias-sensitive tokens initially predicted by the model. To address this gap in research, we present an extensive analysis of bias from decoding techniques for open-domain language generation considering the entire decoding space. We analyze to what extent bias metrics like toxicity and sentiment are impacted by the individual components of decoder algorithms. To this extent, we also analyze the trade-off between bias scores and human-annotated generation quality throughout the decoder space. Together, these methods reveal the imperative of testing inference time bias and provide evidence on the usefulness of inspecting the entire decoding spectrum."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="das-balke-2022-quantifying">
<titleInfo>
<title>Quantifying Bias from Decoding Techniques in Natural Language Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mayukh</namePart>
<namePart type="family">Das</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wolf</namePart>
<namePart type="given">Tilo</namePart>
<namePart type="family">Balke</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 29th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chu-Ren</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hansaem</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">Pustejovsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Key-Sun</namePart>
<namePart type="family">Choi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pum-Mo</namePart>
<namePart type="family">Ryu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hsin-Hsi</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Donatelli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sadao</namePart>
<namePart type="family">Kurohashi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Patrizia</namePart>
<namePart type="family">Paggio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seokhwan</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Younggyun</namePart>
<namePart type="family">Hahm</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhong</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tony</namePart>
<namePart type="given">Kyungil</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Enrico</namePart>
<namePart type="family">Santus</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Francis</namePart>
<namePart type="family">Bond</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seung-Hoon</namePart>
<namePart type="family">Na</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Gyeongju, Republic of Korea</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Natural language generation (NLG) models can propagate social bias towards particular demography. Though several studies investigated bias from data and model, NLG task distinctively uses stochastic decoder that can positively or negatively impact the bias-sensitive tokens initially predicted by the model. To address this gap in research, we present an extensive analysis of bias from decoding techniques for open-domain language generation considering the entire decoding space. We analyze to what extent bias metrics like toxicity and sentiment are impacted by the individual components of decoder algorithms. To this extent, we also analyze the trade-off between bias scores and human-annotated generation quality throughout the decoder space. Together, these methods reveal the imperative of testing inference time bias and provide evidence on the usefulness of inspecting the entire decoding spectrum.</abstract>
<identifier type="citekey">das-balke-2022-quantifying</identifier>
<location>
<url>https://aclanthology.org/2022.coling-1.112/</url>
</location>
<part>
<date>2022-10</date>
<extent unit="page">
<start>1311</start>
<end>1323</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Quantifying Bias from Decoding Techniques in Natural Language Generation
%A Das, Mayukh
%A Balke, Wolf Tilo
%Y Calzolari, Nicoletta
%Y Huang, Chu-Ren
%Y Kim, Hansaem
%Y Pustejovsky, James
%Y Wanner, Leo
%Y Choi, Key-Sun
%Y Ryu, Pum-Mo
%Y Chen, Hsin-Hsi
%Y Donatelli, Lucia
%Y Ji, Heng
%Y Kurohashi, Sadao
%Y Paggio, Patrizia
%Y Xue, Nianwen
%Y Kim, Seokhwan
%Y Hahm, Younggyun
%Y He, Zhong
%Y Lee, Tony Kyungil
%Y Santus, Enrico
%Y Bond, Francis
%Y Na, Seung-Hoon
%S Proceedings of the 29th International Conference on Computational Linguistics
%D 2022
%8 October
%I International Committee on Computational Linguistics
%C Gyeongju, Republic of Korea
%F das-balke-2022-quantifying
%X Natural language generation (NLG) models can propagate social bias towards particular demography. Though several studies investigated bias from data and model, NLG task distinctively uses stochastic decoder that can positively or negatively impact the bias-sensitive tokens initially predicted by the model. To address this gap in research, we present an extensive analysis of bias from decoding techniques for open-domain language generation considering the entire decoding space. We analyze to what extent bias metrics like toxicity and sentiment are impacted by the individual components of decoder algorithms. To this extent, we also analyze the trade-off between bias scores and human-annotated generation quality throughout the decoder space. Together, these methods reveal the imperative of testing inference time bias and provide evidence on the usefulness of inspecting the entire decoding spectrum.
%U https://aclanthology.org/2022.coling-1.112/
%P 1311-1323
Markdown (Informal)
[Quantifying Bias from Decoding Techniques in Natural Language Generation](https://aclanthology.org/2022.coling-1.112/) (Das & Balke, COLING 2022)
ACL