@inproceedings{wang-etal-2022-drk,
title = "{DRK}: Discriminative Rule-based Knowledge for Relieving Prediction Confusions in Few-shot Relation Extraction",
author = "Wang, Mengru and
Zheng, Jianming and
Cai, Fei and
Shao, Taihua and
Chen, Honghui",
editor = "Calzolari, Nicoletta and
Huang, Chu-Ren and
Kim, Hansaem and
Pustejovsky, James and
Wanner, Leo and
Choi, Key-Sun and
Ryu, Pum-Mo and
Chen, Hsin-Hsi and
Donatelli, Lucia and
Ji, Heng and
Kurohashi, Sadao and
Paggio, Patrizia and
Xue, Nianwen and
Kim, Seokhwan and
Hahm, Younggyun and
He, Zhong and
Lee, Tony Kyungil and
Santus, Enrico and
Bond, Francis and
Na, Seung-Hoon",
booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
month = oct,
year = "2022",
address = "Gyeongju, Republic of Korea",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2022.coling-1.186",
pages = "2129--2140",
abstract = "Few-shot relation extraction aims to identify the relation type between entities in a given text in the low-resource scenario. Albeit much progress, existing meta-learning methods still fall into prediction confusions owing to the limited inference ability over shallow text features. To relieve these confusions, this paper proposes a discriminative rule-based knowledge (DRK) method. Specifically, DRK adopts a logic-aware inference module to ease the word-overlap confusion, which introduces a logic rule to constrain the inference process, thereby avoiding the adverse effect of shallow text features. Also, DRK employs a discrimination finding module to alleviate the entity-type confusion, which explores distinguishable text features via a hierarchical contrastive learning. We conduct extensive experiments on four types of meta tasks and the results show promising improvements from DRK (6.0{\%} accuracy gains on average). Besides, error analyses reveal the word-overlap and entity-type errors are the main courses of mispredictions in few-shot relation extraction.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-etal-2022-drk">
<titleInfo>
<title>DRK: Discriminative Rule-based Knowledge for Relieving Prediction Confusions in Few-shot Relation Extraction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mengru</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jianming</namePart>
<namePart type="family">Zheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fei</namePart>
<namePart type="family">Cai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Taihua</namePart>
<namePart type="family">Shao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Honghui</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 29th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chu-Ren</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hansaem</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">Pustejovsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Key-Sun</namePart>
<namePart type="family">Choi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pum-Mo</namePart>
<namePart type="family">Ryu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hsin-Hsi</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Donatelli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sadao</namePart>
<namePart type="family">Kurohashi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Patrizia</namePart>
<namePart type="family">Paggio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seokhwan</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Younggyun</namePart>
<namePart type="family">Hahm</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhong</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tony</namePart>
<namePart type="given">Kyungil</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Enrico</namePart>
<namePart type="family">Santus</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Francis</namePart>
<namePart type="family">Bond</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seung-Hoon</namePart>
<namePart type="family">Na</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Gyeongju, Republic of Korea</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Few-shot relation extraction aims to identify the relation type between entities in a given text in the low-resource scenario. Albeit much progress, existing meta-learning methods still fall into prediction confusions owing to the limited inference ability over shallow text features. To relieve these confusions, this paper proposes a discriminative rule-based knowledge (DRK) method. Specifically, DRK adopts a logic-aware inference module to ease the word-overlap confusion, which introduces a logic rule to constrain the inference process, thereby avoiding the adverse effect of shallow text features. Also, DRK employs a discrimination finding module to alleviate the entity-type confusion, which explores distinguishable text features via a hierarchical contrastive learning. We conduct extensive experiments on four types of meta tasks and the results show promising improvements from DRK (6.0% accuracy gains on average). Besides, error analyses reveal the word-overlap and entity-type errors are the main courses of mispredictions in few-shot relation extraction.</abstract>
<identifier type="citekey">wang-etal-2022-drk</identifier>
<location>
<url>https://aclanthology.org/2022.coling-1.186</url>
</location>
<part>
<date>2022-10</date>
<extent unit="page">
<start>2129</start>
<end>2140</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T DRK: Discriminative Rule-based Knowledge for Relieving Prediction Confusions in Few-shot Relation Extraction
%A Wang, Mengru
%A Zheng, Jianming
%A Cai, Fei
%A Shao, Taihua
%A Chen, Honghui
%Y Calzolari, Nicoletta
%Y Huang, Chu-Ren
%Y Kim, Hansaem
%Y Pustejovsky, James
%Y Wanner, Leo
%Y Choi, Key-Sun
%Y Ryu, Pum-Mo
%Y Chen, Hsin-Hsi
%Y Donatelli, Lucia
%Y Ji, Heng
%Y Kurohashi, Sadao
%Y Paggio, Patrizia
%Y Xue, Nianwen
%Y Kim, Seokhwan
%Y Hahm, Younggyun
%Y He, Zhong
%Y Lee, Tony Kyungil
%Y Santus, Enrico
%Y Bond, Francis
%Y Na, Seung-Hoon
%S Proceedings of the 29th International Conference on Computational Linguistics
%D 2022
%8 October
%I International Committee on Computational Linguistics
%C Gyeongju, Republic of Korea
%F wang-etal-2022-drk
%X Few-shot relation extraction aims to identify the relation type between entities in a given text in the low-resource scenario. Albeit much progress, existing meta-learning methods still fall into prediction confusions owing to the limited inference ability over shallow text features. To relieve these confusions, this paper proposes a discriminative rule-based knowledge (DRK) method. Specifically, DRK adopts a logic-aware inference module to ease the word-overlap confusion, which introduces a logic rule to constrain the inference process, thereby avoiding the adverse effect of shallow text features. Also, DRK employs a discrimination finding module to alleviate the entity-type confusion, which explores distinguishable text features via a hierarchical contrastive learning. We conduct extensive experiments on four types of meta tasks and the results show promising improvements from DRK (6.0% accuracy gains on average). Besides, error analyses reveal the word-overlap and entity-type errors are the main courses of mispredictions in few-shot relation extraction.
%U https://aclanthology.org/2022.coling-1.186
%P 2129-2140
Markdown (Informal)
[DRK: Discriminative Rule-based Knowledge for Relieving Prediction Confusions in Few-shot Relation Extraction](https://aclanthology.org/2022.coling-1.186) (Wang et al., COLING 2022)
ACL