Visual Recipe Flow: A Dataset for Learning Visual State Changes of Objects with Recipe Flows
Keisuke Shirai, Atsushi Hashimoto, Taichi Nishimura, Hirotaka Kameko, Shuhei Kurita, Yoshitaka Ushiku, Shinsuke Mori
Correct Metadata for
Abstract
We present a new multimodal dataset called Visual Recipe Flow, which enables us to learn a cooking action result for each object in a recipe text. The dataset consists of object state changes and the workflow of the recipe text. The state change is represented as an image pair, while the workflow is represented as a recipe flow graph. We developed a web interface to reduce human annotation costs. The dataset allows us to try various applications, including multimodal information retrieval.- Anthology ID:
- 2022.coling-1.315
- Volume:
- Proceedings of the 29th International Conference on Computational Linguistics
- Month:
- October
- Year:
- 2022
- Address:
- Gyeongju, Republic of Korea
- Editors:
- Nicoletta Calzolari, Chu-Ren Huang, Hansaem Kim, James Pustejovsky, Leo Wanner, Key-Sun Choi, Pum-Mo Ryu, Hsin-Hsi Chen, Lucia Donatelli, Heng Ji, Sadao Kurohashi, Patrizia Paggio, Nianwen Xue, Seokhwan Kim, Younggyun Hahm, Zhong He, Tony Kyungil Lee, Enrico Santus, Francis Bond, Seung-Hoon Na
- Venue:
- COLING
- SIG:
- Publisher:
- International Committee on Computational Linguistics
- Note:
- Pages:
- 3570–3577
- Language:
- URL:
- https://aclanthology.org/2022.coling-1.315/
- DOI:
- Bibkey:
- Cite (ACL):
- Keisuke Shirai, Atsushi Hashimoto, Taichi Nishimura, Hirotaka Kameko, Shuhei Kurita, Yoshitaka Ushiku, and Shinsuke Mori. 2022. Visual Recipe Flow: A Dataset for Learning Visual State Changes of Objects with Recipe Flows. In Proceedings of the 29th International Conference on Computational Linguistics, pages 3570–3577, Gyeongju, Republic of Korea. International Committee on Computational Linguistics.
- Cite (Informal):
- Visual Recipe Flow: A Dataset for Learning Visual State Changes of Objects with Recipe Flows (Shirai et al., COLING 2022)
- Copy Citation:
- PDF:
- https://aclanthology.org/2022.coling-1.315.pdf
Export citation
@inproceedings{shirai-etal-2022-visual, title = "Visual Recipe Flow: A Dataset for Learning Visual State Changes of Objects with Recipe Flows", author = "Shirai, Keisuke and Hashimoto, Atsushi and Nishimura, Taichi and Kameko, Hirotaka and Kurita, Shuhei and Ushiku, Yoshitaka and Mori, Shinsuke", editor = "Calzolari, Nicoletta and Huang, Chu-Ren and Kim, Hansaem and Pustejovsky, James and Wanner, Leo and Choi, Key-Sun and Ryu, Pum-Mo and Chen, Hsin-Hsi and Donatelli, Lucia and Ji, Heng and Kurohashi, Sadao and Paggio, Patrizia and Xue, Nianwen and Kim, Seokhwan and Hahm, Younggyun and He, Zhong and Lee, Tony Kyungil and Santus, Enrico and Bond, Francis and Na, Seung-Hoon", booktitle = "Proceedings of the 29th International Conference on Computational Linguistics", month = oct, year = "2022", address = "Gyeongju, Republic of Korea", publisher = "International Committee on Computational Linguistics", url = "https://aclanthology.org/2022.coling-1.315/", pages = "3570--3577", abstract = "We present a new multimodal dataset called Visual Recipe Flow, which enables us to learn a cooking action result for each object in a recipe text. The dataset consists of object state changes and the workflow of the recipe text. The state change is represented as an image pair, while the workflow is represented as a recipe flow graph. We developed a web interface to reduce human annotation costs. The dataset allows us to try various applications, including multimodal information retrieval." }
<?xml version="1.0" encoding="UTF-8"?> <modsCollection xmlns="http://www.loc.gov/mods/v3"> <mods ID="shirai-etal-2022-visual"> <titleInfo> <title>Visual Recipe Flow: A Dataset for Learning Visual State Changes of Objects with Recipe Flows</title> </titleInfo> <name type="personal"> <namePart type="given">Keisuke</namePart> <namePart type="family">Shirai</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Atsushi</namePart> <namePart type="family">Hashimoto</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Taichi</namePart> <namePart type="family">Nishimura</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Hirotaka</namePart> <namePart type="family">Kameko</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Shuhei</namePart> <namePart type="family">Kurita</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Yoshitaka</namePart> <namePart type="family">Ushiku</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Shinsuke</namePart> <namePart type="family">Mori</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2022-10</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <relatedItem type="host"> <titleInfo> <title>Proceedings of the 29th International Conference on Computational Linguistics</title> </titleInfo> <name type="personal"> <namePart type="given">Nicoletta</namePart> <namePart type="family">Calzolari</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Chu-Ren</namePart> <namePart type="family">Huang</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Hansaem</namePart> <namePart type="family">Kim</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">James</namePart> <namePart type="family">Pustejovsky</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Leo</namePart> <namePart type="family">Wanner</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Key-Sun</namePart> <namePart type="family">Choi</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Pum-Mo</namePart> <namePart type="family">Ryu</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Hsin-Hsi</namePart> <namePart type="family">Chen</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Lucia</namePart> <namePart type="family">Donatelli</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Heng</namePart> <namePart type="family">Ji</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Sadao</namePart> <namePart type="family">Kurohashi</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Patrizia</namePart> <namePart type="family">Paggio</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Nianwen</namePart> <namePart type="family">Xue</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Seokhwan</namePart> <namePart type="family">Kim</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Younggyun</namePart> <namePart type="family">Hahm</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Zhong</namePart> <namePart type="family">He</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Tony</namePart> <namePart type="given">Kyungil</namePart> <namePart type="family">Lee</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Enrico</namePart> <namePart type="family">Santus</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Francis</namePart> <namePart type="family">Bond</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Seung-Hoon</namePart> <namePart type="family">Na</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <originInfo> <publisher>International Committee on Computational Linguistics</publisher> <place> <placeTerm type="text">Gyeongju, Republic of Korea</placeTerm> </place> </originInfo> <genre authority="marcgt">conference publication</genre> </relatedItem> <abstract>We present a new multimodal dataset called Visual Recipe Flow, which enables us to learn a cooking action result for each object in a recipe text. The dataset consists of object state changes and the workflow of the recipe text. The state change is represented as an image pair, while the workflow is represented as a recipe flow graph. We developed a web interface to reduce human annotation costs. The dataset allows us to try various applications, including multimodal information retrieval.</abstract> <identifier type="citekey">shirai-etal-2022-visual</identifier> <location> <url>https://aclanthology.org/2022.coling-1.315/</url> </location> <part> <date>2022-10</date> <extent unit="page"> <start>3570</start> <end>3577</end> </extent> </part> </mods> </modsCollection>
%0 Conference Proceedings %T Visual Recipe Flow: A Dataset for Learning Visual State Changes of Objects with Recipe Flows %A Shirai, Keisuke %A Hashimoto, Atsushi %A Nishimura, Taichi %A Kameko, Hirotaka %A Kurita, Shuhei %A Ushiku, Yoshitaka %A Mori, Shinsuke %Y Calzolari, Nicoletta %Y Huang, Chu-Ren %Y Kim, Hansaem %Y Pustejovsky, James %Y Wanner, Leo %Y Choi, Key-Sun %Y Ryu, Pum-Mo %Y Chen, Hsin-Hsi %Y Donatelli, Lucia %Y Ji, Heng %Y Kurohashi, Sadao %Y Paggio, Patrizia %Y Xue, Nianwen %Y Kim, Seokhwan %Y Hahm, Younggyun %Y He, Zhong %Y Lee, Tony Kyungil %Y Santus, Enrico %Y Bond, Francis %Y Na, Seung-Hoon %S Proceedings of the 29th International Conference on Computational Linguistics %D 2022 %8 October %I International Committee on Computational Linguistics %C Gyeongju, Republic of Korea %F shirai-etal-2022-visual %X We present a new multimodal dataset called Visual Recipe Flow, which enables us to learn a cooking action result for each object in a recipe text. The dataset consists of object state changes and the workflow of the recipe text. The state change is represented as an image pair, while the workflow is represented as a recipe flow graph. We developed a web interface to reduce human annotation costs. The dataset allows us to try various applications, including multimodal information retrieval. %U https://aclanthology.org/2022.coling-1.315/ %P 3570-3577
Markdown (Informal)
[Visual Recipe Flow: A Dataset for Learning Visual State Changes of Objects with Recipe Flows](https://aclanthology.org/2022.coling-1.315/) (Shirai et al., COLING 2022)
- Visual Recipe Flow: A Dataset for Learning Visual State Changes of Objects with Recipe Flows (Shirai et al., COLING 2022)
ACL
- Keisuke Shirai, Atsushi Hashimoto, Taichi Nishimura, Hirotaka Kameko, Shuhei Kurita, Yoshitaka Ushiku, and Shinsuke Mori. 2022. Visual Recipe Flow: A Dataset for Learning Visual State Changes of Objects with Recipe Flows. In Proceedings of the 29th International Conference on Computational Linguistics, pages 3570–3577, Gyeongju, Republic of Korea. International Committee on Computational Linguistics.