Singlish Message Paraphrasing: A Joint Task of Creole Translation and Text Normalization

Zhengyuan Liu, Shikang Ni, Ai Ti Aw, Nancy F. Chen


Abstract
Within the natural language processing community, English is by far the most resource-rich language. There is emerging interest in conducting translation via computational approaches to conform its dialects or creole languages back to standard English. This computational approach paves the way to leverage generic English language backbones, which are beneficial for various downstream tasks. However, in practical online communication scenarios, the use of language varieties is often accompanied by noisy user-generated content, making this translation task more challenging. In this work, we introduce a joint paraphrasing task of creole translation and text normalization of Singlish messages, which can shed light on how to process other language varieties and dialects. We formulate the task in three different linguistic dimensions: lexical level normalization, syntactic level editing, and semantic level rewriting. We build an annotated dataset of Singlish-to-Standard English messages, and report performance on a perturbation-resilient sequence-to-sequence model. Experimental results show that the model produces reasonable generation results, and can improve the performance of downstream tasks like stance detection.
Anthology ID:
2022.coling-1.345
Volume:
Proceedings of the 29th International Conference on Computational Linguistics
Month:
October
Year:
2022
Address:
Gyeongju, Republic of Korea
Editors:
Nicoletta Calzolari, Chu-Ren Huang, Hansaem Kim, James Pustejovsky, Leo Wanner, Key-Sun Choi, Pum-Mo Ryu, Hsin-Hsi Chen, Lucia Donatelli, Heng Ji, Sadao Kurohashi, Patrizia Paggio, Nianwen Xue, Seokhwan Kim, Younggyun Hahm, Zhong He, Tony Kyungil Lee, Enrico Santus, Francis Bond, Seung-Hoon Na
Venue:
COLING
SIG:
Publisher:
International Committee on Computational Linguistics
Note:
Pages:
3924–3936
Language:
URL:
https://aclanthology.org/2022.coling-1.345
DOI:
Bibkey:
Cite (ACL):
Zhengyuan Liu, Shikang Ni, Ai Ti Aw, and Nancy F. Chen. 2022. Singlish Message Paraphrasing: A Joint Task of Creole Translation and Text Normalization. In Proceedings of the 29th International Conference on Computational Linguistics, pages 3924–3936, Gyeongju, Republic of Korea. International Committee on Computational Linguistics.
Cite (Informal):
Singlish Message Paraphrasing: A Joint Task of Creole Translation and Text Normalization (Liu et al., COLING 2022)
Copy Citation:
PDF:
https://aclanthology.org/2022.coling-1.345.pdf