Belief Revision Based Caption Re-ranker with Visual Semantic Information
Ahmed Sabir, Francesc Moreno-Noguer, Pranava Madhyastha, Lluís Padró
Abstract
In this work, we focus on improving the captions generated by image-caption generation systems. We propose a novel re-ranking approach that leverages visual-semantic measures to identify the ideal caption that maximally captures the visual information in the image. Our re-ranker utilizes the Belief Revision framework (Blok et al., 2003) to calibrate the original likelihood of the top-n captions by explicitly exploiting semantic relatedness between the depicted caption and the visual context. Our experiments demonstrate the utility of our approach, where we observe that our re-ranker can enhance the performance of a typical image-captioning system without necessity of any additional training or fine-tuning.- Anthology ID:
- 2022.coling-1.487
- Volume:
- Proceedings of the 29th International Conference on Computational Linguistics
- Month:
- October
- Year:
- 2022
- Address:
- Gyeongju, Republic of Korea
- Editors:
- Nicoletta Calzolari, Chu-Ren Huang, Hansaem Kim, James Pustejovsky, Leo Wanner, Key-Sun Choi, Pum-Mo Ryu, Hsin-Hsi Chen, Lucia Donatelli, Heng Ji, Sadao Kurohashi, Patrizia Paggio, Nianwen Xue, Seokhwan Kim, Younggyun Hahm, Zhong He, Tony Kyungil Lee, Enrico Santus, Francis Bond, Seung-Hoon Na
- Venue:
- COLING
- SIG:
- Publisher:
- International Committee on Computational Linguistics
- Note:
- Pages:
- 5488–5506
- Language:
- URL:
- https://aclanthology.org/2022.coling-1.487
- DOI:
- Bibkey:
- Cite (ACL):
- Ahmed Sabir, Francesc Moreno-Noguer, Pranava Madhyastha, and Lluís Padró. 2022. Belief Revision Based Caption Re-ranker with Visual Semantic Information. In Proceedings of the 29th International Conference on Computational Linguistics, pages 5488–5506, Gyeongju, Republic of Korea. International Committee on Computational Linguistics.
- Cite (Informal):
- Belief Revision Based Caption Re-ranker with Visual Semantic Information (Sabir et al., COLING 2022)
- Copy Citation:
- PDF:
- https://aclanthology.org/2022.coling-1.487.pdf
- Code
- ahmedssabir/belief-revision-score
Export citation
@inproceedings{sabir-etal-2022-belief, title = "Belief Revision Based Caption Re-ranker with Visual Semantic Information", author = "Sabir, Ahmed and Moreno-Noguer, Francesc and Madhyastha, Pranava and Padr{\'o}, Llu{\'\i}s", editor = "Calzolari, Nicoletta and Huang, Chu-Ren and Kim, Hansaem and Pustejovsky, James and Wanner, Leo and Choi, Key-Sun and Ryu, Pum-Mo and Chen, Hsin-Hsi and Donatelli, Lucia and Ji, Heng and Kurohashi, Sadao and Paggio, Patrizia and Xue, Nianwen and Kim, Seokhwan and Hahm, Younggyun and He, Zhong and Lee, Tony Kyungil and Santus, Enrico and Bond, Francis and Na, Seung-Hoon", booktitle = "Proceedings of the 29th International Conference on Computational Linguistics", month = oct, year = "2022", address = "Gyeongju, Republic of Korea", publisher = "International Committee on Computational Linguistics", url = "https://aclanthology.org/2022.coling-1.487", pages = "5488--5506", abstract = "In this work, we focus on improving the captions generated by image-caption generation systems. We propose a novel re-ranking approach that leverages visual-semantic measures to identify the ideal caption that maximally captures the visual information in the image. Our re-ranker utilizes the Belief Revision framework (Blok et al., 2003) to calibrate the original likelihood of the top-n captions by explicitly exploiting semantic relatedness between the depicted caption and the visual context. Our experiments demonstrate the utility of our approach, where we observe that our re-ranker can enhance the performance of a typical image-captioning system without necessity of any additional training or fine-tuning.", }
<?xml version="1.0" encoding="UTF-8"?> <modsCollection xmlns="http://www.loc.gov/mods/v3"> <mods ID="sabir-etal-2022-belief"> <titleInfo> <title>Belief Revision Based Caption Re-ranker with Visual Semantic Information</title> </titleInfo> <name type="personal"> <namePart type="given">Ahmed</namePart> <namePart type="family">Sabir</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Francesc</namePart> <namePart type="family">Moreno-Noguer</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Pranava</namePart> <namePart type="family">Madhyastha</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Lluís</namePart> <namePart type="family">Padró</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2022-10</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <relatedItem type="host"> <titleInfo> <title>Proceedings of the 29th International Conference on Computational Linguistics</title> </titleInfo> <name type="personal"> <namePart type="given">Nicoletta</namePart> <namePart type="family">Calzolari</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Chu-Ren</namePart> <namePart type="family">Huang</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Hansaem</namePart> <namePart type="family">Kim</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">James</namePart> <namePart type="family">Pustejovsky</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Leo</namePart> <namePart type="family">Wanner</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Key-Sun</namePart> <namePart type="family">Choi</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Pum-Mo</namePart> <namePart type="family">Ryu</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Hsin-Hsi</namePart> <namePart type="family">Chen</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Lucia</namePart> <namePart type="family">Donatelli</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Heng</namePart> <namePart type="family">Ji</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Sadao</namePart> <namePart type="family">Kurohashi</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Patrizia</namePart> <namePart type="family">Paggio</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Nianwen</namePart> <namePart type="family">Xue</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Seokhwan</namePart> <namePart type="family">Kim</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Younggyun</namePart> <namePart type="family">Hahm</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Zhong</namePart> <namePart type="family">He</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Tony</namePart> <namePart type="given">Kyungil</namePart> <namePart type="family">Lee</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Enrico</namePart> <namePart type="family">Santus</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Francis</namePart> <namePart type="family">Bond</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Seung-Hoon</namePart> <namePart type="family">Na</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <originInfo> <publisher>International Committee on Computational Linguistics</publisher> <place> <placeTerm type="text">Gyeongju, Republic of Korea</placeTerm> </place> </originInfo> <genre authority="marcgt">conference publication</genre> </relatedItem> <abstract>In this work, we focus on improving the captions generated by image-caption generation systems. We propose a novel re-ranking approach that leverages visual-semantic measures to identify the ideal caption that maximally captures the visual information in the image. Our re-ranker utilizes the Belief Revision framework (Blok et al., 2003) to calibrate the original likelihood of the top-n captions by explicitly exploiting semantic relatedness between the depicted caption and the visual context. Our experiments demonstrate the utility of our approach, where we observe that our re-ranker can enhance the performance of a typical image-captioning system without necessity of any additional training or fine-tuning.</abstract> <identifier type="citekey">sabir-etal-2022-belief</identifier> <location> <url>https://aclanthology.org/2022.coling-1.487</url> </location> <part> <date>2022-10</date> <extent unit="page"> <start>5488</start> <end>5506</end> </extent> </part> </mods> </modsCollection>
%0 Conference Proceedings %T Belief Revision Based Caption Re-ranker with Visual Semantic Information %A Sabir, Ahmed %A Moreno-Noguer, Francesc %A Madhyastha, Pranava %A Padró, Lluís %Y Calzolari, Nicoletta %Y Huang, Chu-Ren %Y Kim, Hansaem %Y Pustejovsky, James %Y Wanner, Leo %Y Choi, Key-Sun %Y Ryu, Pum-Mo %Y Chen, Hsin-Hsi %Y Donatelli, Lucia %Y Ji, Heng %Y Kurohashi, Sadao %Y Paggio, Patrizia %Y Xue, Nianwen %Y Kim, Seokhwan %Y Hahm, Younggyun %Y He, Zhong %Y Lee, Tony Kyungil %Y Santus, Enrico %Y Bond, Francis %Y Na, Seung-Hoon %S Proceedings of the 29th International Conference on Computational Linguistics %D 2022 %8 October %I International Committee on Computational Linguistics %C Gyeongju, Republic of Korea %F sabir-etal-2022-belief %X In this work, we focus on improving the captions generated by image-caption generation systems. We propose a novel re-ranking approach that leverages visual-semantic measures to identify the ideal caption that maximally captures the visual information in the image. Our re-ranker utilizes the Belief Revision framework (Blok et al., 2003) to calibrate the original likelihood of the top-n captions by explicitly exploiting semantic relatedness between the depicted caption and the visual context. Our experiments demonstrate the utility of our approach, where we observe that our re-ranker can enhance the performance of a typical image-captioning system without necessity of any additional training or fine-tuning. %U https://aclanthology.org/2022.coling-1.487 %P 5488-5506
Markdown (Informal)
[Belief Revision Based Caption Re-ranker with Visual Semantic Information](https://aclanthology.org/2022.coling-1.487) (Sabir et al., COLING 2022)
- Belief Revision Based Caption Re-ranker with Visual Semantic Information (Sabir et al., COLING 2022)
ACL
- Ahmed Sabir, Francesc Moreno-Noguer, Pranava Madhyastha, and Lluís Padró. 2022. Belief Revision Based Caption Re-ranker with Visual Semantic Information. In Proceedings of the 29th International Conference on Computational Linguistics, pages 5488–5506, Gyeongju, Republic of Korea. International Committee on Computational Linguistics.