@inproceedings{zheng-etal-2022-ueca,
title = "{UECA}-Prompt: Universal Prompt for Emotion Cause Analysis",
author = "Zheng, Xiaopeng and
Liu, Zhiyue and
Zhang, Zizhen and
Wang, Zhaoyang and
Wang, Jiahai",
editor = "Calzolari, Nicoletta and
Huang, Chu-Ren and
Kim, Hansaem and
Pustejovsky, James and
Wanner, Leo and
Choi, Key-Sun and
Ryu, Pum-Mo and
Chen, Hsin-Hsi and
Donatelli, Lucia and
Ji, Heng and
Kurohashi, Sadao and
Paggio, Patrizia and
Xue, Nianwen and
Kim, Seokhwan and
Hahm, Younggyun and
He, Zhong and
Lee, Tony Kyungil and
Santus, Enrico and
Bond, Francis and
Na, Seung-Hoon",
booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
month = oct,
year = "2022",
address = "Gyeongju, Republic of Korea",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2022.coling-1.613",
pages = "7031--7041",
abstract = "Emotion cause analysis (ECA) aims to extract emotion clauses and find the corresponding cause of the emotion. Existing methods adopt fine-tuning paradigm to solve certain types of ECA tasks. These task-specific methods have a deficiency of universality. And the relations among multiple objectives in one task are not explicitly modeled. Moreover, the relative position information introduced in most existing methods may make the model suffer from dataset bias. To address the first two problems, this paper proposes a universal prompt tuning method to solve different ECA tasks in the unified framework. As for the third problem, this paper designs a directional constraint module and a sequential learning module to ease the bias. Considering the commonalities among different tasks, this paper proposes a cross-task training method to further explore the capability of the model. The experimental results show that our method achieves competitive performance on the ECA datasets.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zheng-etal-2022-ueca">
<titleInfo>
<title>UECA-Prompt: Universal Prompt for Emotion Cause Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xiaopeng</namePart>
<namePart type="family">Zheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhiyue</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zizhen</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhaoyang</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiahai</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 29th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chu-Ren</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hansaem</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">Pustejovsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Key-Sun</namePart>
<namePart type="family">Choi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pum-Mo</namePart>
<namePart type="family">Ryu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hsin-Hsi</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Donatelli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sadao</namePart>
<namePart type="family">Kurohashi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Patrizia</namePart>
<namePart type="family">Paggio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seokhwan</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Younggyun</namePart>
<namePart type="family">Hahm</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhong</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tony</namePart>
<namePart type="given">Kyungil</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Enrico</namePart>
<namePart type="family">Santus</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Francis</namePart>
<namePart type="family">Bond</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seung-Hoon</namePart>
<namePart type="family">Na</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Gyeongju, Republic of Korea</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Emotion cause analysis (ECA) aims to extract emotion clauses and find the corresponding cause of the emotion. Existing methods adopt fine-tuning paradigm to solve certain types of ECA tasks. These task-specific methods have a deficiency of universality. And the relations among multiple objectives in one task are not explicitly modeled. Moreover, the relative position information introduced in most existing methods may make the model suffer from dataset bias. To address the first two problems, this paper proposes a universal prompt tuning method to solve different ECA tasks in the unified framework. As for the third problem, this paper designs a directional constraint module and a sequential learning module to ease the bias. Considering the commonalities among different tasks, this paper proposes a cross-task training method to further explore the capability of the model. The experimental results show that our method achieves competitive performance on the ECA datasets.</abstract>
<identifier type="citekey">zheng-etal-2022-ueca</identifier>
<location>
<url>https://aclanthology.org/2022.coling-1.613</url>
</location>
<part>
<date>2022-10</date>
<extent unit="page">
<start>7031</start>
<end>7041</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T UECA-Prompt: Universal Prompt for Emotion Cause Analysis
%A Zheng, Xiaopeng
%A Liu, Zhiyue
%A Zhang, Zizhen
%A Wang, Zhaoyang
%A Wang, Jiahai
%Y Calzolari, Nicoletta
%Y Huang, Chu-Ren
%Y Kim, Hansaem
%Y Pustejovsky, James
%Y Wanner, Leo
%Y Choi, Key-Sun
%Y Ryu, Pum-Mo
%Y Chen, Hsin-Hsi
%Y Donatelli, Lucia
%Y Ji, Heng
%Y Kurohashi, Sadao
%Y Paggio, Patrizia
%Y Xue, Nianwen
%Y Kim, Seokhwan
%Y Hahm, Younggyun
%Y He, Zhong
%Y Lee, Tony Kyungil
%Y Santus, Enrico
%Y Bond, Francis
%Y Na, Seung-Hoon
%S Proceedings of the 29th International Conference on Computational Linguistics
%D 2022
%8 October
%I International Committee on Computational Linguistics
%C Gyeongju, Republic of Korea
%F zheng-etal-2022-ueca
%X Emotion cause analysis (ECA) aims to extract emotion clauses and find the corresponding cause of the emotion. Existing methods adopt fine-tuning paradigm to solve certain types of ECA tasks. These task-specific methods have a deficiency of universality. And the relations among multiple objectives in one task are not explicitly modeled. Moreover, the relative position information introduced in most existing methods may make the model suffer from dataset bias. To address the first two problems, this paper proposes a universal prompt tuning method to solve different ECA tasks in the unified framework. As for the third problem, this paper designs a directional constraint module and a sequential learning module to ease the bias. Considering the commonalities among different tasks, this paper proposes a cross-task training method to further explore the capability of the model. The experimental results show that our method achieves competitive performance on the ECA datasets.
%U https://aclanthology.org/2022.coling-1.613
%P 7031-7041
Markdown (Informal)
[UECA-Prompt: Universal Prompt for Emotion Cause Analysis](https://aclanthology.org/2022.coling-1.613) (Zheng et al., COLING 2022)
ACL
- Xiaopeng Zheng, Zhiyue Liu, Zizhen Zhang, Zhaoyang Wang, and Jiahai Wang. 2022. UECA-Prompt: Universal Prompt for Emotion Cause Analysis. In Proceedings of the 29th International Conference on Computational Linguistics, pages 7031–7041, Gyeongju, Republic of Korea. International Committee on Computational Linguistics.