@inproceedings{ghosh-etal-2022-em,
title = "{EM}-{PERSONA}: {EM}otion-assisted Deep Neural Framework for {PERSONA}lity Subtyping from Suicide Notes",
author = "Ghosh, Soumitra and
Maurya, Dhirendra Kumar and
Ekbal, Asif and
Bhattacharyya, Pushpak",
editor = "Calzolari, Nicoletta and
Huang, Chu-Ren and
Kim, Hansaem and
Pustejovsky, James and
Wanner, Leo and
Choi, Key-Sun and
Ryu, Pum-Mo and
Chen, Hsin-Hsi and
Donatelli, Lucia and
Ji, Heng and
Kurohashi, Sadao and
Paggio, Patrizia and
Xue, Nianwen and
Kim, Seokhwan and
Hahm, Younggyun and
He, Zhong and
Lee, Tony Kyungil and
Santus, Enrico and
Bond, Francis and
Na, Seung-Hoon",
booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
month = oct,
year = "2022",
address = "Gyeongju, Republic of Korea",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2022.coling-1.93/",
pages = "1098--1105",
abstract = "The World Health Organization has emphasised the need of stepping up suicide prevention efforts to meet the United Nation`s Sustainable Development Goal target of 2030 (Goal 3: Good health and well-being). We address the challenging task of personality subtyping from suicide notes. Most research on personality subtyping has relied on statistical analysis and feature engineering. Moreover, state-of-the-art transformer models in the automated personality subtyping problem have received relatively less attention. We develop a novel EMotion-assisted PERSONAlity Detection Framework (EM-PERSONA). We annotate the benchmark CEASE-v2.0 suicide notes dataset with personality traits across four dichotomies: Introversion (I)-Extraversion (E), Intuition (N)-Sensing (S), Thinking (T)-Feeling (F), Judging (J){--}Perceiving (P). Our proposed method outperforms all baselines on comprehensive evaluation using multiple state-of-the-art systems. Across the four dichotomies, EM-PERSONA improved accuracy by 2.04{\%}, 3.69{\%}, 4.52{\%}, and 3.42{\%}, respectively, over the highest-performing single-task systems."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ghosh-etal-2022-em">
<titleInfo>
<title>EM-PERSONA: EMotion-assisted Deep Neural Framework for PERSONAlity Subtyping from Suicide Notes</title>
</titleInfo>
<name type="personal">
<namePart type="given">Soumitra</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dhirendra</namePart>
<namePart type="given">Kumar</namePart>
<namePart type="family">Maurya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asif</namePart>
<namePart type="family">Ekbal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pushpak</namePart>
<namePart type="family">Bhattacharyya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 29th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chu-Ren</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hansaem</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">Pustejovsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Key-Sun</namePart>
<namePart type="family">Choi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pum-Mo</namePart>
<namePart type="family">Ryu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hsin-Hsi</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Donatelli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sadao</namePart>
<namePart type="family">Kurohashi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Patrizia</namePart>
<namePart type="family">Paggio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seokhwan</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Younggyun</namePart>
<namePart type="family">Hahm</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhong</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tony</namePart>
<namePart type="given">Kyungil</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Enrico</namePart>
<namePart type="family">Santus</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Francis</namePart>
<namePart type="family">Bond</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seung-Hoon</namePart>
<namePart type="family">Na</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Gyeongju, Republic of Korea</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The World Health Organization has emphasised the need of stepping up suicide prevention efforts to meet the United Nation‘s Sustainable Development Goal target of 2030 (Goal 3: Good health and well-being). We address the challenging task of personality subtyping from suicide notes. Most research on personality subtyping has relied on statistical analysis and feature engineering. Moreover, state-of-the-art transformer models in the automated personality subtyping problem have received relatively less attention. We develop a novel EMotion-assisted PERSONAlity Detection Framework (EM-PERSONA). We annotate the benchmark CEASE-v2.0 suicide notes dataset with personality traits across four dichotomies: Introversion (I)-Extraversion (E), Intuition (N)-Sensing (S), Thinking (T)-Feeling (F), Judging (J)–Perceiving (P). Our proposed method outperforms all baselines on comprehensive evaluation using multiple state-of-the-art systems. Across the four dichotomies, EM-PERSONA improved accuracy by 2.04%, 3.69%, 4.52%, and 3.42%, respectively, over the highest-performing single-task systems.</abstract>
<identifier type="citekey">ghosh-etal-2022-em</identifier>
<location>
<url>https://aclanthology.org/2022.coling-1.93/</url>
</location>
<part>
<date>2022-10</date>
<extent unit="page">
<start>1098</start>
<end>1105</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T EM-PERSONA: EMotion-assisted Deep Neural Framework for PERSONAlity Subtyping from Suicide Notes
%A Ghosh, Soumitra
%A Maurya, Dhirendra Kumar
%A Ekbal, Asif
%A Bhattacharyya, Pushpak
%Y Calzolari, Nicoletta
%Y Huang, Chu-Ren
%Y Kim, Hansaem
%Y Pustejovsky, James
%Y Wanner, Leo
%Y Choi, Key-Sun
%Y Ryu, Pum-Mo
%Y Chen, Hsin-Hsi
%Y Donatelli, Lucia
%Y Ji, Heng
%Y Kurohashi, Sadao
%Y Paggio, Patrizia
%Y Xue, Nianwen
%Y Kim, Seokhwan
%Y Hahm, Younggyun
%Y He, Zhong
%Y Lee, Tony Kyungil
%Y Santus, Enrico
%Y Bond, Francis
%Y Na, Seung-Hoon
%S Proceedings of the 29th International Conference on Computational Linguistics
%D 2022
%8 October
%I International Committee on Computational Linguistics
%C Gyeongju, Republic of Korea
%F ghosh-etal-2022-em
%X The World Health Organization has emphasised the need of stepping up suicide prevention efforts to meet the United Nation‘s Sustainable Development Goal target of 2030 (Goal 3: Good health and well-being). We address the challenging task of personality subtyping from suicide notes. Most research on personality subtyping has relied on statistical analysis and feature engineering. Moreover, state-of-the-art transformer models in the automated personality subtyping problem have received relatively less attention. We develop a novel EMotion-assisted PERSONAlity Detection Framework (EM-PERSONA). We annotate the benchmark CEASE-v2.0 suicide notes dataset with personality traits across four dichotomies: Introversion (I)-Extraversion (E), Intuition (N)-Sensing (S), Thinking (T)-Feeling (F), Judging (J)–Perceiving (P). Our proposed method outperforms all baselines on comprehensive evaluation using multiple state-of-the-art systems. Across the four dichotomies, EM-PERSONA improved accuracy by 2.04%, 3.69%, 4.52%, and 3.42%, respectively, over the highest-performing single-task systems.
%U https://aclanthology.org/2022.coling-1.93/
%P 1098-1105
Markdown (Informal)
[EM-PERSONA: EMotion-assisted Deep Neural Framework for PERSONAlity Subtyping from Suicide Notes](https://aclanthology.org/2022.coling-1.93/) (Ghosh et al., COLING 2022)
ACL