@inproceedings{mueller-etal-2022-causal,
title = "Causal Analysis of Syntactic Agreement Neurons in Multilingual Language Models",
author = "Mueller, Aaron and
Xia, Yu and
Linzen, Tal",
editor = "Fokkens, Antske and
Srikumar, Vivek",
booktitle = "Proceedings of the 26th Conference on Computational Natural Language Learning (CoNLL)",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates (Hybrid)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.conll-1.8/",
doi = "10.18653/v1/2022.conll-1.8",
pages = "95--109",
abstract = "Structural probing work has found evidence for latent syntactic information in pre-trained language models. However, much of this analysis has focused on monolingual models, and analyses of multilingual models have employed correlational methods that are confounded by the choice of probing tasks. In this study, we causally probe multilingual language models (XGLM and multilingual BERT) as well as monolingual BERT-based models across various languages; we do this by performing counterfactual perturbations on neuron activations and observing the effect on models' subject-verb agreement probabilities. We observe where in the model and to what extent syntactic agreement is encoded in each language. We find significant neuron overlap across languages in autoregressive multilingual language models, but not masked language models. We also find two distinct layer-wise effect patterns and two distinct sets of neurons used for syntactic agreement, depending on whether the subject and verb are separated by other tokens. Finally, we find that behavioral analyses of language models are likely underestimating how sensitive masked language models are to syntactic information."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mueller-etal-2022-causal">
<titleInfo>
<title>Causal Analysis of Syntactic Agreement Neurons in Multilingual Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aaron</namePart>
<namePart type="family">Mueller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yu</namePart>
<namePart type="family">Xia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tal</namePart>
<namePart type="family">Linzen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 26th Conference on Computational Natural Language Learning (CoNLL)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Antske</namePart>
<namePart type="family">Fokkens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates (Hybrid)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Structural probing work has found evidence for latent syntactic information in pre-trained language models. However, much of this analysis has focused on monolingual models, and analyses of multilingual models have employed correlational methods that are confounded by the choice of probing tasks. In this study, we causally probe multilingual language models (XGLM and multilingual BERT) as well as monolingual BERT-based models across various languages; we do this by performing counterfactual perturbations on neuron activations and observing the effect on models’ subject-verb agreement probabilities. We observe where in the model and to what extent syntactic agreement is encoded in each language. We find significant neuron overlap across languages in autoregressive multilingual language models, but not masked language models. We also find two distinct layer-wise effect patterns and two distinct sets of neurons used for syntactic agreement, depending on whether the subject and verb are separated by other tokens. Finally, we find that behavioral analyses of language models are likely underestimating how sensitive masked language models are to syntactic information.</abstract>
<identifier type="citekey">mueller-etal-2022-causal</identifier>
<identifier type="doi">10.18653/v1/2022.conll-1.8</identifier>
<location>
<url>https://aclanthology.org/2022.conll-1.8/</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>95</start>
<end>109</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Causal Analysis of Syntactic Agreement Neurons in Multilingual Language Models
%A Mueller, Aaron
%A Xia, Yu
%A Linzen, Tal
%Y Fokkens, Antske
%Y Srikumar, Vivek
%S Proceedings of the 26th Conference on Computational Natural Language Learning (CoNLL)
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates (Hybrid)
%F mueller-etal-2022-causal
%X Structural probing work has found evidence for latent syntactic information in pre-trained language models. However, much of this analysis has focused on monolingual models, and analyses of multilingual models have employed correlational methods that are confounded by the choice of probing tasks. In this study, we causally probe multilingual language models (XGLM and multilingual BERT) as well as monolingual BERT-based models across various languages; we do this by performing counterfactual perturbations on neuron activations and observing the effect on models’ subject-verb agreement probabilities. We observe where in the model and to what extent syntactic agreement is encoded in each language. We find significant neuron overlap across languages in autoregressive multilingual language models, but not masked language models. We also find two distinct layer-wise effect patterns and two distinct sets of neurons used for syntactic agreement, depending on whether the subject and verb are separated by other tokens. Finally, we find that behavioral analyses of language models are likely underestimating how sensitive masked language models are to syntactic information.
%R 10.18653/v1/2022.conll-1.8
%U https://aclanthology.org/2022.conll-1.8/
%U https://doi.org/10.18653/v1/2022.conll-1.8
%P 95-109
Markdown (Informal)
[Causal Analysis of Syntactic Agreement Neurons in Multilingual Language Models](https://aclanthology.org/2022.conll-1.8/) (Mueller et al., CoNLL 2022)
ACL