@inproceedings{lucas-etal-2022-detecting,
title = "Detecting False Claims in Low-Resource Regions: A Case Study of {C}aribbean Islands",
author = "Lucas, Jason and
Cui, Limeng and
Le, Thai and
Lee, Dongwon",
editor = "Chakraborty, Tanmoy and
Akhtar, Md. Shad and
Shu, Kai and
Bernard, H. Russell and
Liakata, Maria and
Nakov, Preslav and
Srivastava, Aseem",
booktitle = "Proceedings of the Workshop on Combating Online Hostile Posts in Regional Languages during Emergency Situations",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.constraint-1.11",
doi = "10.18653/v1/2022.constraint-1.11",
pages = "95--102",
abstract = "The COVID-19 pandemic has created threats to global health control. Misinformation circulated on social media and news outlets has undermined public trust towards Government and health agencies. This problem is further exacerbated in developing countries or low-resource regions, where the news is not equipped with abundant English fact-checking information. In this paper, we make the first attempt to detect COVID-19 misinformation (in English, Spanish, and Haitian French) populated in the Caribbean regions, using the fact-checked claims in the US (in English). We started by collecting a dataset of Caribbean real {\&} fake claims. Then we trained several classification and language models on COVID-19 in the high-resource language regions and transferred the knowledge to the Caribbean claim dataset. The experimental results of this paper reveal the limitations of current fake claim detection in low-resource regions and encourage further research on multi-lingual detection.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lucas-etal-2022-detecting">
<titleInfo>
<title>Detecting False Claims in Low-Resource Regions: A Case Study of Caribbean Islands</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jason</namePart>
<namePart type="family">Lucas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Limeng</namePart>
<namePart type="family">Cui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thai</namePart>
<namePart type="family">Le</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dongwon</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop on Combating Online Hostile Posts in Regional Languages during Emergency Situations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Md.</namePart>
<namePart type="given">Shad</namePart>
<namePart type="family">Akhtar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kai</namePart>
<namePart type="family">Shu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">H</namePart>
<namePart type="given">Russell</namePart>
<namePart type="family">Bernard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="family">Liakata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aseem</namePart>
<namePart type="family">Srivastava</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The COVID-19 pandemic has created threats to global health control. Misinformation circulated on social media and news outlets has undermined public trust towards Government and health agencies. This problem is further exacerbated in developing countries or low-resource regions, where the news is not equipped with abundant English fact-checking information. In this paper, we make the first attempt to detect COVID-19 misinformation (in English, Spanish, and Haitian French) populated in the Caribbean regions, using the fact-checked claims in the US (in English). We started by collecting a dataset of Caribbean real & fake claims. Then we trained several classification and language models on COVID-19 in the high-resource language regions and transferred the knowledge to the Caribbean claim dataset. The experimental results of this paper reveal the limitations of current fake claim detection in low-resource regions and encourage further research on multi-lingual detection.</abstract>
<identifier type="citekey">lucas-etal-2022-detecting</identifier>
<identifier type="doi">10.18653/v1/2022.constraint-1.11</identifier>
<location>
<url>https://aclanthology.org/2022.constraint-1.11</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>95</start>
<end>102</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Detecting False Claims in Low-Resource Regions: A Case Study of Caribbean Islands
%A Lucas, Jason
%A Cui, Limeng
%A Le, Thai
%A Lee, Dongwon
%Y Chakraborty, Tanmoy
%Y Akhtar, Md. Shad
%Y Shu, Kai
%Y Bernard, H. Russell
%Y Liakata, Maria
%Y Nakov, Preslav
%Y Srivastava, Aseem
%S Proceedings of the Workshop on Combating Online Hostile Posts in Regional Languages during Emergency Situations
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F lucas-etal-2022-detecting
%X The COVID-19 pandemic has created threats to global health control. Misinformation circulated on social media and news outlets has undermined public trust towards Government and health agencies. This problem is further exacerbated in developing countries or low-resource regions, where the news is not equipped with abundant English fact-checking information. In this paper, we make the first attempt to detect COVID-19 misinformation (in English, Spanish, and Haitian French) populated in the Caribbean regions, using the fact-checked claims in the US (in English). We started by collecting a dataset of Caribbean real & fake claims. Then we trained several classification and language models on COVID-19 in the high-resource language regions and transferred the knowledge to the Caribbean claim dataset. The experimental results of this paper reveal the limitations of current fake claim detection in low-resource regions and encourage further research on multi-lingual detection.
%R 10.18653/v1/2022.constraint-1.11
%U https://aclanthology.org/2022.constraint-1.11
%U https://doi.org/10.18653/v1/2022.constraint-1.11
%P 95-102
Markdown (Informal)
[Detecting False Claims in Low-Resource Regions: A Case Study of Caribbean Islands](https://aclanthology.org/2022.constraint-1.11) (Lucas et al., CONSTRAINT 2022)
ACL