@inproceedings{tan-le-etal-2022-deep,
title = "Deep Learning-Based Morphological Segmentation for Indigenous Languages: A Study Case on Innu-Aimun",
author = "Tan Le, Ngoc and
Cadotte, Antoine and
Boivin, Mathieu and
Sadat, Fatiha and
Terraza, Jimena",
editor = "Cherry, Colin and
Fan, Angela and
Foster, George and
Haffari, Gholamreza (Reza) and
Khadivi, Shahram and
Peng, Nanyun (Violet) and
Ren, Xiang and
Shareghi, Ehsan and
Swayamdipta, Swabha",
booktitle = "Proceedings of the Third Workshop on Deep Learning for Low-Resource Natural Language Processing",
month = jul,
year = "2022",
address = "Hybrid",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.deeplo-1.16/",
doi = "10.18653/v1/2022.deeplo-1.16",
pages = "146--151",
abstract = "Recent advances in the field of deep learning have led to a growing interest in the development of NLP approaches for low-resource and endangered languages. Nevertheless, relatively little research, related to NLP, has been conducted on indigenous languages. These languages are considered to be filled with complexities and challenges that make their study incredibly difficult in the NLP and AI fields. This paper focuses on the morphological segmentation of indigenous languages, an extremely challenging task because of polysynthesis, dialectal variations with rich morpho-phonemics, misspellings and resource-limited scenario issues. The proposed approach, towards a morphological segmentation of Innu-Aimun, an extremely low-resource indigenous language of Canada, is based on deep learning. Experiments and evaluations have shown promising results, compared to state-of-the-art rule-based and unsupervised approaches."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tan-le-etal-2022-deep">
<titleInfo>
<title>Deep Learning-Based Morphological Segmentation for Indigenous Languages: A Study Case on Innu-Aimun</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ngoc</namePart>
<namePart type="family">Tan Le</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Antoine</namePart>
<namePart type="family">Cadotte</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mathieu</namePart>
<namePart type="family">Boivin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fatiha</namePart>
<namePart type="family">Sadat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jimena</namePart>
<namePart type="family">Terraza</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Third Workshop on Deep Learning for Low-Resource Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Colin</namePart>
<namePart type="family">Cherry</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Angela</namePart>
<namePart type="family">Fan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">George</namePart>
<namePart type="family">Foster</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gholamreza</namePart>
<namePart type="given">(Reza)</namePart>
<namePart type="family">Haffari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shahram</namePart>
<namePart type="family">Khadivi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nanyun</namePart>
<namePart type="given">(Violet)</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiang</namePart>
<namePart type="family">Ren</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ehsan</namePart>
<namePart type="family">Shareghi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Swabha</namePart>
<namePart type="family">Swayamdipta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hybrid</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recent advances in the field of deep learning have led to a growing interest in the development of NLP approaches for low-resource and endangered languages. Nevertheless, relatively little research, related to NLP, has been conducted on indigenous languages. These languages are considered to be filled with complexities and challenges that make their study incredibly difficult in the NLP and AI fields. This paper focuses on the morphological segmentation of indigenous languages, an extremely challenging task because of polysynthesis, dialectal variations with rich morpho-phonemics, misspellings and resource-limited scenario issues. The proposed approach, towards a morphological segmentation of Innu-Aimun, an extremely low-resource indigenous language of Canada, is based on deep learning. Experiments and evaluations have shown promising results, compared to state-of-the-art rule-based and unsupervised approaches.</abstract>
<identifier type="citekey">tan-le-etal-2022-deep</identifier>
<identifier type="doi">10.18653/v1/2022.deeplo-1.16</identifier>
<location>
<url>https://aclanthology.org/2022.deeplo-1.16/</url>
</location>
<part>
<date>2022-07</date>
<extent unit="page">
<start>146</start>
<end>151</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Deep Learning-Based Morphological Segmentation for Indigenous Languages: A Study Case on Innu-Aimun
%A Tan Le, Ngoc
%A Cadotte, Antoine
%A Boivin, Mathieu
%A Sadat, Fatiha
%A Terraza, Jimena
%Y Cherry, Colin
%Y Fan, Angela
%Y Foster, George
%Y Haffari, Gholamreza (Reza)
%Y Khadivi, Shahram
%Y Peng, Nanyun (Violet)
%Y Ren, Xiang
%Y Shareghi, Ehsan
%Y Swayamdipta, Swabha
%S Proceedings of the Third Workshop on Deep Learning for Low-Resource Natural Language Processing
%D 2022
%8 July
%I Association for Computational Linguistics
%C Hybrid
%F tan-le-etal-2022-deep
%X Recent advances in the field of deep learning have led to a growing interest in the development of NLP approaches for low-resource and endangered languages. Nevertheless, relatively little research, related to NLP, has been conducted on indigenous languages. These languages are considered to be filled with complexities and challenges that make their study incredibly difficult in the NLP and AI fields. This paper focuses on the morphological segmentation of indigenous languages, an extremely challenging task because of polysynthesis, dialectal variations with rich morpho-phonemics, misspellings and resource-limited scenario issues. The proposed approach, towards a morphological segmentation of Innu-Aimun, an extremely low-resource indigenous language of Canada, is based on deep learning. Experiments and evaluations have shown promising results, compared to state-of-the-art rule-based and unsupervised approaches.
%R 10.18653/v1/2022.deeplo-1.16
%U https://aclanthology.org/2022.deeplo-1.16/
%U https://doi.org/10.18653/v1/2022.deeplo-1.16
%P 146-151
Markdown (Informal)
[Deep Learning-Based Morphological Segmentation for Indigenous Languages: A Study Case on Innu-Aimun](https://aclanthology.org/2022.deeplo-1.16/) (Tan Le et al., DeepLo 2022)
ACL