@inproceedings{s-r-etal-2022-sentiment,
title = "Sentiment Analysis on Code-Switched {D}ravidian Languages with Kernel Based Extreme Learning Machines",
author = "S R, Mithun Kumar and
Kumar, Lov and
Malapati, Aruna",
editor = "Chakravarthi, Bharathi Raja and
Priyadharshini, Ruba and
Madasamy, Anand Kumar and
Krishnamurthy, Parameswari and
Sherly, Elizabeth and
Mahesan, Sinnathamby",
booktitle = "Proceedings of the Second Workshop on Speech and Language Technologies for Dravidian Languages",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.dravidianlangtech-1.29/",
doi = "10.18653/v1/2022.dravidianlangtech-1.29",
pages = "184--190",
abstract = "Code-switching refers to the textual or spoken data containing multiple languages. Application of natural language processing (NLP) tasks like sentiment analysis is a harder problem on code-switched languages due to the irregularities in the sentence structuring and ordering. This paper shows the experiment results of building a Kernel based Extreme Learning Machines(ELM) for sentiment analysis for code-switched Dravidian languages with English. Our results show that ELM performs better than traditional machine learning classifiers on various metrics as well as trains faster than deep learning models. We also show that Polynomial kernels perform better than others in the ELM architecture. We were able to achieve a median AUC of 0.79 with a polynomial kernel."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="s-r-etal-2022-sentiment">
<titleInfo>
<title>Sentiment Analysis on Code-Switched Dravidian Languages with Kernel Based Extreme Learning Machines</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mithun</namePart>
<namePart type="given">Kumar</namePart>
<namePart type="family">S R</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lov</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aruna</namePart>
<namePart type="family">Malapati</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Second Workshop on Speech and Language Technologies for Dravidian Languages</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bharathi</namePart>
<namePart type="given">Raja</namePart>
<namePart type="family">Chakravarthi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruba</namePart>
<namePart type="family">Priyadharshini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anand</namePart>
<namePart type="given">Kumar</namePart>
<namePart type="family">Madasamy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Parameswari</namePart>
<namePart type="family">Krishnamurthy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elizabeth</namePart>
<namePart type="family">Sherly</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sinnathamby</namePart>
<namePart type="family">Mahesan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Code-switching refers to the textual or spoken data containing multiple languages. Application of natural language processing (NLP) tasks like sentiment analysis is a harder problem on code-switched languages due to the irregularities in the sentence structuring and ordering. This paper shows the experiment results of building a Kernel based Extreme Learning Machines(ELM) for sentiment analysis for code-switched Dravidian languages with English. Our results show that ELM performs better than traditional machine learning classifiers on various metrics as well as trains faster than deep learning models. We also show that Polynomial kernels perform better than others in the ELM architecture. We were able to achieve a median AUC of 0.79 with a polynomial kernel.</abstract>
<identifier type="citekey">s-r-etal-2022-sentiment</identifier>
<identifier type="doi">10.18653/v1/2022.dravidianlangtech-1.29</identifier>
<location>
<url>https://aclanthology.org/2022.dravidianlangtech-1.29/</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>184</start>
<end>190</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Sentiment Analysis on Code-Switched Dravidian Languages with Kernel Based Extreme Learning Machines
%A S R, Mithun Kumar
%A Kumar, Lov
%A Malapati, Aruna
%Y Chakravarthi, Bharathi Raja
%Y Priyadharshini, Ruba
%Y Madasamy, Anand Kumar
%Y Krishnamurthy, Parameswari
%Y Sherly, Elizabeth
%Y Mahesan, Sinnathamby
%S Proceedings of the Second Workshop on Speech and Language Technologies for Dravidian Languages
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F s-r-etal-2022-sentiment
%X Code-switching refers to the textual or spoken data containing multiple languages. Application of natural language processing (NLP) tasks like sentiment analysis is a harder problem on code-switched languages due to the irregularities in the sentence structuring and ordering. This paper shows the experiment results of building a Kernel based Extreme Learning Machines(ELM) for sentiment analysis for code-switched Dravidian languages with English. Our results show that ELM performs better than traditional machine learning classifiers on various metrics as well as trains faster than deep learning models. We also show that Polynomial kernels perform better than others in the ELM architecture. We were able to achieve a median AUC of 0.79 with a polynomial kernel.
%R 10.18653/v1/2022.dravidianlangtech-1.29
%U https://aclanthology.org/2022.dravidianlangtech-1.29/
%U https://doi.org/10.18653/v1/2022.dravidianlangtech-1.29
%P 184-190
Markdown (Informal)
[Sentiment Analysis on Code-Switched Dravidian Languages with Kernel Based Extreme Learning Machines](https://aclanthology.org/2022.dravidianlangtech-1.29/) (S R et al., DravidianLangTech 2022)
ACL