DeepSPIN: Deep Structured Prediction for Natural Language Processing

André F. T. Martins, Ben Peters, Chrysoula Zerva, Chunchuan Lyu, Gonçalo Correia, Marcos Treviso, Pedro Martins, Tsvetomila Mihaylova


Abstract
DeepSPIN is a research project funded by the European Research Council (ERC) whose goal is to develop new neural structured prediction methods, models, and algorithms for improving the quality, interpretability, and data-efficiency of natural language processing (NLP) systems, with special emphasis on machine translation and quality estimation. We describe in this paper the latest findings from this project.
Anthology ID:
2022.eamt-1.53
Volume:
Proceedings of the 23rd Annual Conference of the European Association for Machine Translation
Month:
June
Year:
2022
Address:
Ghent, Belgium
Editors:
Helena Moniz, Lieve Macken, Andrew Rufener, Loïc Barrault, Marta R. Costa-jussà, Christophe Declercq, Maarit Koponen, Ellie Kemp, Spyridon Pilos, Mikel L. Forcada, Carolina Scarton, Joachim Van den Bogaert, Joke Daems, Arda Tezcan, Bram Vanroy, Margot Fonteyne
Venue:
EAMT
SIG:
Publisher:
European Association for Machine Translation
Note:
Pages:
327–328
Language:
URL:
https://aclanthology.org/2022.eamt-1.53
DOI:
Bibkey:
Cite (ACL):
André F. T. Martins, Ben Peters, Chrysoula Zerva, Chunchuan Lyu, Gonçalo Correia, Marcos Treviso, Pedro Martins, and Tsvetomila Mihaylova. 2022. DeepSPIN: Deep Structured Prediction for Natural Language Processing. In Proceedings of the 23rd Annual Conference of the European Association for Machine Translation, pages 327–328, Ghent, Belgium. European Association for Machine Translation.
Cite (Informal):
DeepSPIN: Deep Structured Prediction for Natural Language Processing (Martins et al., EAMT 2022)
Copy Citation:
PDF:
https://aclanthology.org/2022.eamt-1.53.pdf