@inproceedings{wang-etal-2022-easynlp,
title = "{E}asy{NLP}: A Comprehensive and Easy-to-use Toolkit for Natural Language Processing",
author = "Wang, Chengyu and
Qiu, Minghui and
Zhang, Taolin and
Liu, Tingting and
Li, Lei and
Wang, Jianing and
Wang, Ming and
Huang, Jun and
Lin, Wei",
editor = "Che, Wanxiang and
Shutova, Ekaterina",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = dec,
year = "2022",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.emnlp-demos.3/",
doi = "10.18653/v1/2022.emnlp-demos.3",
pages = "22--29",
abstract = "Pre-Trained Models (PTMs) have reshaped the development of Natural Language Processing (NLP) and achieved significant improvement in various benchmarks. Yet, it is not easy for industrial practitioners to obtain high-performing PTM-based models without a large amount of labeled training data and deploy them online with fast inference speed. To bridge this gap, EasyNLP is designed to make it easy to build NLP applications, which supports a comprehensive suite of NLP algorithms. It further features knowledge-enhanced pre-training, knowledge distillation and few-shot learning functionalities, and provides a unified framework of model training, inference and deployment for real-world applications. EasyNLP has powered over ten business units within Alibaba Group and is seamlessly integrated to the Platform of AI (PAI) products on Alibaba Cloud. The source code of EasyNLP is released at GitHub (\url{https://github.com/alibaba/EasyNLP})."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-etal-2022-easynlp">
<titleInfo>
<title>EasyNLP: A Comprehensive and Easy-to-use Toolkit for Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chengyu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Minghui</namePart>
<namePart type="family">Qiu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Taolin</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tingting</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lei</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jianing</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ming</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Pre-Trained Models (PTMs) have reshaped the development of Natural Language Processing (NLP) and achieved significant improvement in various benchmarks. Yet, it is not easy for industrial practitioners to obtain high-performing PTM-based models without a large amount of labeled training data and deploy them online with fast inference speed. To bridge this gap, EasyNLP is designed to make it easy to build NLP applications, which supports a comprehensive suite of NLP algorithms. It further features knowledge-enhanced pre-training, knowledge distillation and few-shot learning functionalities, and provides a unified framework of model training, inference and deployment for real-world applications. EasyNLP has powered over ten business units within Alibaba Group and is seamlessly integrated to the Platform of AI (PAI) products on Alibaba Cloud. The source code of EasyNLP is released at GitHub (https://github.com/alibaba/EasyNLP).</abstract>
<identifier type="citekey">wang-etal-2022-easynlp</identifier>
<identifier type="doi">10.18653/v1/2022.emnlp-demos.3</identifier>
<location>
<url>https://aclanthology.org/2022.emnlp-demos.3/</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>22</start>
<end>29</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T EasyNLP: A Comprehensive and Easy-to-use Toolkit for Natural Language Processing
%A Wang, Chengyu
%A Qiu, Minghui
%A Zhang, Taolin
%A Liu, Tingting
%A Li, Lei
%A Wang, Jianing
%A Wang, Ming
%A Huang, Jun
%A Lin, Wei
%Y Che, Wanxiang
%Y Shutova, Ekaterina
%S Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F wang-etal-2022-easynlp
%X Pre-Trained Models (PTMs) have reshaped the development of Natural Language Processing (NLP) and achieved significant improvement in various benchmarks. Yet, it is not easy for industrial practitioners to obtain high-performing PTM-based models without a large amount of labeled training data and deploy them online with fast inference speed. To bridge this gap, EasyNLP is designed to make it easy to build NLP applications, which supports a comprehensive suite of NLP algorithms. It further features knowledge-enhanced pre-training, knowledge distillation and few-shot learning functionalities, and provides a unified framework of model training, inference and deployment for real-world applications. EasyNLP has powered over ten business units within Alibaba Group and is seamlessly integrated to the Platform of AI (PAI) products on Alibaba Cloud. The source code of EasyNLP is released at GitHub (https://github.com/alibaba/EasyNLP).
%R 10.18653/v1/2022.emnlp-demos.3
%U https://aclanthology.org/2022.emnlp-demos.3/
%U https://doi.org/10.18653/v1/2022.emnlp-demos.3
%P 22-29
Markdown (Informal)
[EasyNLP: A Comprehensive and Easy-to-use Toolkit for Natural Language Processing](https://aclanthology.org/2022.emnlp-demos.3/) (Wang et al., EMNLP 2022)
ACL
- Chengyu Wang, Minghui Qiu, Taolin Zhang, Tingting Liu, Lei Li, Jianing Wang, Ming Wang, Jun Huang, and Wei Lin. 2022. EasyNLP: A Comprehensive and Easy-to-use Toolkit for Natural Language Processing. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 22–29, Abu Dhabi, UAE. Association for Computational Linguistics.