@inproceedings{yoon-etal-2022-biomedical,
title = "Biomedical {NER} for the Enterprise with Distillated {BERN}2 and the Kazu Framework",
author = "Yoon, Wonjin and
Jackson, Richard and
Ford, Elliot and
Poroshin, Vladimir and
Kang, Jaewoo",
editor = "Li, Yunyao and
Lazaridou, Angeliki",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: Industry Track",
month = dec,
year = "2022",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.emnlp-industry.63",
doi = "10.18653/v1/2022.emnlp-industry.63",
pages = "619--626",
abstract = "In order to assist the drug discovery/development process, pharmaceutical companies often apply biomedical NER and linking techniques over internal and public corpora. Decades of study of the field of BioNLP has produced a plethora of algorithms, systems and datasets. However, our experience has been that no single open source system meets all the requirements of a modern pharmaceutical company. In this work, we describe these requirements according to our experience of the industry, and present Kazu, a highly extensible, scalable open source framework designed to support BioNLP for the pharmaceutical sector. Kazu is a built around a computationally efficient version of the BERN2 NER model (TinyBERN2), and subsequently wraps several other BioNLP technologies into one coherent system.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yoon-etal-2022-biomedical">
<titleInfo>
<title>Biomedical NER for the Enterprise with Distillated BERN2 and the Kazu Framework</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wonjin</namePart>
<namePart type="family">Yoon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Richard</namePart>
<namePart type="family">Jackson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elliot</namePart>
<namePart type="family">Ford</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vladimir</namePart>
<namePart type="family">Poroshin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jaewoo</namePart>
<namePart type="family">Kang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: Industry Track</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yunyao</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Angeliki</namePart>
<namePart type="family">Lazaridou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In order to assist the drug discovery/development process, pharmaceutical companies often apply biomedical NER and linking techniques over internal and public corpora. Decades of study of the field of BioNLP has produced a plethora of algorithms, systems and datasets. However, our experience has been that no single open source system meets all the requirements of a modern pharmaceutical company. In this work, we describe these requirements according to our experience of the industry, and present Kazu, a highly extensible, scalable open source framework designed to support BioNLP for the pharmaceutical sector. Kazu is a built around a computationally efficient version of the BERN2 NER model (TinyBERN2), and subsequently wraps several other BioNLP technologies into one coherent system.</abstract>
<identifier type="citekey">yoon-etal-2022-biomedical</identifier>
<identifier type="doi">10.18653/v1/2022.emnlp-industry.63</identifier>
<location>
<url>https://aclanthology.org/2022.emnlp-industry.63</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>619</start>
<end>626</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Biomedical NER for the Enterprise with Distillated BERN2 and the Kazu Framework
%A Yoon, Wonjin
%A Jackson, Richard
%A Ford, Elliot
%A Poroshin, Vladimir
%A Kang, Jaewoo
%Y Li, Yunyao
%Y Lazaridou, Angeliki
%S Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: Industry Track
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F yoon-etal-2022-biomedical
%X In order to assist the drug discovery/development process, pharmaceutical companies often apply biomedical NER and linking techniques over internal and public corpora. Decades of study of the field of BioNLP has produced a plethora of algorithms, systems and datasets. However, our experience has been that no single open source system meets all the requirements of a modern pharmaceutical company. In this work, we describe these requirements according to our experience of the industry, and present Kazu, a highly extensible, scalable open source framework designed to support BioNLP for the pharmaceutical sector. Kazu is a built around a computationally efficient version of the BERN2 NER model (TinyBERN2), and subsequently wraps several other BioNLP technologies into one coherent system.
%R 10.18653/v1/2022.emnlp-industry.63
%U https://aclanthology.org/2022.emnlp-industry.63
%U https://doi.org/10.18653/v1/2022.emnlp-industry.63
%P 619-626
Markdown (Informal)
[Biomedical NER for the Enterprise with Distillated BERN2 and the Kazu Framework](https://aclanthology.org/2022.emnlp-industry.63) (Yoon et al., EMNLP 2022)
ACL