@inproceedings{qixiang-etal-2022-exploiting,
title = "Exploiting domain-slot related keywords description for Few-Shot Cross-Domain Dialogue State Tracking",
author = "Qixiang, Gao and
Dong, Guanting and
Mou, Yutao and
Wang, Liwen and
Zeng, Chen and
Guo, Daichi and
Sun, Mingyang and
Xu, Weiran",
editor = "Goldberg, Yoav and
Kozareva, Zornitsa and
Zhang, Yue",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.emnlp-main.157/",
doi = "10.18653/v1/2022.emnlp-main.157",
pages = "2460--2465",
abstract = "Collecting dialogue data with domain-slot-value labels for dialogue state tracking (DST) could be a costly process. In this paper, we propose a novel framework based on domain-slot related description to tackle the challenge of few-shot cross-domain DST. Specifically, we design an extraction module to extract domain-slot related verbs and nouns in the dialogue. Then, we integrates them into the description, which aims to prompt the model to identify the slot information. Furthermore, we introduce a random sampling strategy to improve the domain generalization ability of the model. We utilize a pre-trained model to encode contexts and description and generates answers with an auto-regressive manner. Experimental results show that our approaches substantially outperform the existing few-shot DST methods on MultiWOZ and gain strong improvements on the slot accuracy comparing to existing slot description methods."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="qixiang-etal-2022-exploiting">
<titleInfo>
<title>Exploiting domain-slot related keywords description for Few-Shot Cross-Domain Dialogue State Tracking</title>
</titleInfo>
<name type="personal">
<namePart type="given">Gao</namePart>
<namePart type="family">Qixiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guanting</namePart>
<namePart type="family">Dong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yutao</namePart>
<namePart type="family">Mou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liwen</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chen</namePart>
<namePart type="family">Zeng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daichi</namePart>
<namePart type="family">Guo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mingyang</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Weiran</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Goldberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zornitsa</namePart>
<namePart type="family">Kozareva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Collecting dialogue data with domain-slot-value labels for dialogue state tracking (DST) could be a costly process. In this paper, we propose a novel framework based on domain-slot related description to tackle the challenge of few-shot cross-domain DST. Specifically, we design an extraction module to extract domain-slot related verbs and nouns in the dialogue. Then, we integrates them into the description, which aims to prompt the model to identify the slot information. Furthermore, we introduce a random sampling strategy to improve the domain generalization ability of the model. We utilize a pre-trained model to encode contexts and description and generates answers with an auto-regressive manner. Experimental results show that our approaches substantially outperform the existing few-shot DST methods on MultiWOZ and gain strong improvements on the slot accuracy comparing to existing slot description methods.</abstract>
<identifier type="citekey">qixiang-etal-2022-exploiting</identifier>
<identifier type="doi">10.18653/v1/2022.emnlp-main.157</identifier>
<location>
<url>https://aclanthology.org/2022.emnlp-main.157/</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>2460</start>
<end>2465</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Exploiting domain-slot related keywords description for Few-Shot Cross-Domain Dialogue State Tracking
%A Qixiang, Gao
%A Dong, Guanting
%A Mou, Yutao
%A Wang, Liwen
%A Zeng, Chen
%A Guo, Daichi
%A Sun, Mingyang
%A Xu, Weiran
%Y Goldberg, Yoav
%Y Kozareva, Zornitsa
%Y Zhang, Yue
%S Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates
%F qixiang-etal-2022-exploiting
%X Collecting dialogue data with domain-slot-value labels for dialogue state tracking (DST) could be a costly process. In this paper, we propose a novel framework based on domain-slot related description to tackle the challenge of few-shot cross-domain DST. Specifically, we design an extraction module to extract domain-slot related verbs and nouns in the dialogue. Then, we integrates them into the description, which aims to prompt the model to identify the slot information. Furthermore, we introduce a random sampling strategy to improve the domain generalization ability of the model. We utilize a pre-trained model to encode contexts and description and generates answers with an auto-regressive manner. Experimental results show that our approaches substantially outperform the existing few-shot DST methods on MultiWOZ and gain strong improvements on the slot accuracy comparing to existing slot description methods.
%R 10.18653/v1/2022.emnlp-main.157
%U https://aclanthology.org/2022.emnlp-main.157/
%U https://doi.org/10.18653/v1/2022.emnlp-main.157
%P 2460-2465
Markdown (Informal)
[Exploiting domain-slot related keywords description for Few-Shot Cross-Domain Dialogue State Tracking](https://aclanthology.org/2022.emnlp-main.157/) (Qixiang et al., EMNLP 2022)
ACL
- Gao Qixiang, Guanting Dong, Yutao Mou, Liwen Wang, Chen Zeng, Daichi Guo, Mingyang Sun, and Weiran Xu. 2022. Exploiting domain-slot related keywords description for Few-Shot Cross-Domain Dialogue State Tracking. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 2460–2465, Abu Dhabi, United Arab Emirates. Association for Computational Linguistics.