@inproceedings{bhardwaj-etal-2022-vector,
title = "Vector-Quantized Input-Contextualized Soft Prompts for Natural Language Understanding",
author = "Bhardwaj, Rishabh and
Saha, Amrita and
Hoi, Steven C.H. and
Poria, Soujanya",
editor = "Goldberg, Yoav and
Kozareva, Zornitsa and
Zhang, Yue",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.emnlp-main.455/",
doi = "10.18653/v1/2022.emnlp-main.455",
pages = "6776--6791",
abstract = "Prompt Tuning has been largely successful as a parameter-efficient method of conditioning large-scale pre-trained language models to perform downstream tasks. Thus far, soft prompt tuning learns a fixed set of task-specific continuous vectors, i.e., soft tokens that remain static across the task samples. A fixed prompt, however, may not generalize well to the diverse kinds of inputs the task comprises. In order to address this, we propose Vector-quantized Input-contextualized Prompts (VIP) as an extension to the soft prompt tuning framework. VIP particularly focuses on two aspects{---}contextual prompts that learns input-specific contextualization of the soft prompt tokens through a small-scale sentence encoder and quantized prompts that maps the contextualized prompts to a set of learnable codebook vectors through a Vector quantization network. On various language understanding tasks like SuperGLUE, QA, Relation classification, NER and NLI, VIP outperforms the soft prompt tuning (PT) baseline by an average margin of 1.19{\%}. Further, our generalization studies show that VIP learns more robust prompt representations, surpassing PT by a margin of 0.6{\%} - 5.3{\%} on Out-of-domain QA and NLI tasks respectively, and by 0.75{\%} on Multi-Task setup over 4 tasks spanning across 12 domains."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bhardwaj-etal-2022-vector">
<titleInfo>
<title>Vector-Quantized Input-Contextualized Soft Prompts for Natural Language Understanding</title>
</titleInfo>
<name type="personal">
<namePart type="given">Rishabh</namePart>
<namePart type="family">Bhardwaj</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amrita</namePart>
<namePart type="family">Saha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="given">C.H.</namePart>
<namePart type="family">Hoi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Soujanya</namePart>
<namePart type="family">Poria</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Goldberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zornitsa</namePart>
<namePart type="family">Kozareva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Prompt Tuning has been largely successful as a parameter-efficient method of conditioning large-scale pre-trained language models to perform downstream tasks. Thus far, soft prompt tuning learns a fixed set of task-specific continuous vectors, i.e., soft tokens that remain static across the task samples. A fixed prompt, however, may not generalize well to the diverse kinds of inputs the task comprises. In order to address this, we propose Vector-quantized Input-contextualized Prompts (VIP) as an extension to the soft prompt tuning framework. VIP particularly focuses on two aspects—contextual prompts that learns input-specific contextualization of the soft prompt tokens through a small-scale sentence encoder and quantized prompts that maps the contextualized prompts to a set of learnable codebook vectors through a Vector quantization network. On various language understanding tasks like SuperGLUE, QA, Relation classification, NER and NLI, VIP outperforms the soft prompt tuning (PT) baseline by an average margin of 1.19%. Further, our generalization studies show that VIP learns more robust prompt representations, surpassing PT by a margin of 0.6% - 5.3% on Out-of-domain QA and NLI tasks respectively, and by 0.75% on Multi-Task setup over 4 tasks spanning across 12 domains.</abstract>
<identifier type="citekey">bhardwaj-etal-2022-vector</identifier>
<identifier type="doi">10.18653/v1/2022.emnlp-main.455</identifier>
<location>
<url>https://aclanthology.org/2022.emnlp-main.455/</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>6776</start>
<end>6791</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Vector-Quantized Input-Contextualized Soft Prompts for Natural Language Understanding
%A Bhardwaj, Rishabh
%A Saha, Amrita
%A Hoi, Steven C.H.
%A Poria, Soujanya
%Y Goldberg, Yoav
%Y Kozareva, Zornitsa
%Y Zhang, Yue
%S Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates
%F bhardwaj-etal-2022-vector
%X Prompt Tuning has been largely successful as a parameter-efficient method of conditioning large-scale pre-trained language models to perform downstream tasks. Thus far, soft prompt tuning learns a fixed set of task-specific continuous vectors, i.e., soft tokens that remain static across the task samples. A fixed prompt, however, may not generalize well to the diverse kinds of inputs the task comprises. In order to address this, we propose Vector-quantized Input-contextualized Prompts (VIP) as an extension to the soft prompt tuning framework. VIP particularly focuses on two aspects—contextual prompts that learns input-specific contextualization of the soft prompt tokens through a small-scale sentence encoder and quantized prompts that maps the contextualized prompts to a set of learnable codebook vectors through a Vector quantization network. On various language understanding tasks like SuperGLUE, QA, Relation classification, NER and NLI, VIP outperforms the soft prompt tuning (PT) baseline by an average margin of 1.19%. Further, our generalization studies show that VIP learns more robust prompt representations, surpassing PT by a margin of 0.6% - 5.3% on Out-of-domain QA and NLI tasks respectively, and by 0.75% on Multi-Task setup over 4 tasks spanning across 12 domains.
%R 10.18653/v1/2022.emnlp-main.455
%U https://aclanthology.org/2022.emnlp-main.455/
%U https://doi.org/10.18653/v1/2022.emnlp-main.455
%P 6776-6791
Markdown (Informal)
[Vector-Quantized Input-Contextualized Soft Prompts for Natural Language Understanding](https://aclanthology.org/2022.emnlp-main.455/) (Bhardwaj et al., EMNLP 2022)
ACL