@inproceedings{xu-etal-2022-bilingual,
title = "Bilingual Synchronization: Restoring Translational Relationships with Editing Operations",
author = "Xu, Jitao and
Crego, Josep and
Yvon, Fran{\c{c}}ois",
editor = "Goldberg, Yoav and
Kozareva, Zornitsa and
Zhang, Yue",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.emnlp-main.548/",
doi = "10.18653/v1/2022.emnlp-main.548",
pages = "8016--8030",
abstract = "Machine Translation (MT) is usually viewed as a one-shot process that generates the target language equivalent of some source text from scratch. We consider here a more general setting which assumes an initial target sequence, that must be transformed into a valid translation of the source, thereby restoring parallelism between source and target. For this bilingual synchronization task, we consider several architectures (both autoregressive and non-autoregressive) and training regimes, and experiment with multiple practical settings such as simulated interactive MT, translating with Translation Memory (TM) and TM cleaning. Our results suggest that one single generic edit-based system, once fine-tuned, can compare with, or even outperform, dedicated systems specifically trained for these tasks."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="xu-etal-2022-bilingual">
<titleInfo>
<title>Bilingual Synchronization: Restoring Translational Relationships with Editing Operations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jitao</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Josep</namePart>
<namePart type="family">Crego</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">François</namePart>
<namePart type="family">Yvon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Goldberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zornitsa</namePart>
<namePart type="family">Kozareva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Machine Translation (MT) is usually viewed as a one-shot process that generates the target language equivalent of some source text from scratch. We consider here a more general setting which assumes an initial target sequence, that must be transformed into a valid translation of the source, thereby restoring parallelism between source and target. For this bilingual synchronization task, we consider several architectures (both autoregressive and non-autoregressive) and training regimes, and experiment with multiple practical settings such as simulated interactive MT, translating with Translation Memory (TM) and TM cleaning. Our results suggest that one single generic edit-based system, once fine-tuned, can compare with, or even outperform, dedicated systems specifically trained for these tasks.</abstract>
<identifier type="citekey">xu-etal-2022-bilingual</identifier>
<identifier type="doi">10.18653/v1/2022.emnlp-main.548</identifier>
<location>
<url>https://aclanthology.org/2022.emnlp-main.548/</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>8016</start>
<end>8030</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Bilingual Synchronization: Restoring Translational Relationships with Editing Operations
%A Xu, Jitao
%A Crego, Josep
%A Yvon, François
%Y Goldberg, Yoav
%Y Kozareva, Zornitsa
%Y Zhang, Yue
%S Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates
%F xu-etal-2022-bilingual
%X Machine Translation (MT) is usually viewed as a one-shot process that generates the target language equivalent of some source text from scratch. We consider here a more general setting which assumes an initial target sequence, that must be transformed into a valid translation of the source, thereby restoring parallelism between source and target. For this bilingual synchronization task, we consider several architectures (both autoregressive and non-autoregressive) and training regimes, and experiment with multiple practical settings such as simulated interactive MT, translating with Translation Memory (TM) and TM cleaning. Our results suggest that one single generic edit-based system, once fine-tuned, can compare with, or even outperform, dedicated systems specifically trained for these tasks.
%R 10.18653/v1/2022.emnlp-main.548
%U https://aclanthology.org/2022.emnlp-main.548/
%U https://doi.org/10.18653/v1/2022.emnlp-main.548
%P 8016-8030
Markdown (Informal)
[Bilingual Synchronization: Restoring Translational Relationships with Editing Operations](https://aclanthology.org/2022.emnlp-main.548/) (Xu et al., EMNLP 2022)
ACL