@inproceedings{mireshghallah-etal-2022-quantifying,
title = "Quantifying Privacy Risks of Masked Language Models Using Membership Inference Attacks",
author = "Mireshghallah, Fatemehsadat and
Goyal, Kartik and
Uniyal, Archit and
Berg-Kirkpatrick, Taylor and
Shokri, Reza",
editor = "Goldberg, Yoav and
Kozareva, Zornitsa and
Zhang, Yue",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.emnlp-main.570",
doi = "10.18653/v1/2022.emnlp-main.570",
pages = "8332--8347",
abstract = "The wide adoption and application of Masked language models (MLMs) on sensitive data (from legal to medical) necessitates a thorough quantitative investigation into their privacy vulnerabilities. Prior attempts at measuring leakage of MLMs via membership inference attacks have been inconclusive, implying potential robustness of MLMs to privacy attacks.In this work, we posit that prior attempts were inconclusive because they based their attack solely on the MLM{'}s model score. We devise a stronger membership inference attack based on likelihood ratio hypothesis testing that involves an additional reference MLM to more accurately quantify the privacy risks of memorization in MLMs. We show that masked language models are indeed susceptible to likelihood ratio membership inference attacks: Our empirical results, on models trained on medical notes, show that our attack improves the AUC of prior membership inference attacks from 0.66 to an alarmingly high 0.90 level.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mireshghallah-etal-2022-quantifying">
<titleInfo>
<title>Quantifying Privacy Risks of Masked Language Models Using Membership Inference Attacks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Fatemehsadat</namePart>
<namePart type="family">Mireshghallah</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kartik</namePart>
<namePart type="family">Goyal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Archit</namePart>
<namePart type="family">Uniyal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Taylor</namePart>
<namePart type="family">Berg-Kirkpatrick</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Reza</namePart>
<namePart type="family">Shokri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Goldberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zornitsa</namePart>
<namePart type="family">Kozareva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The wide adoption and application of Masked language models (MLMs) on sensitive data (from legal to medical) necessitates a thorough quantitative investigation into their privacy vulnerabilities. Prior attempts at measuring leakage of MLMs via membership inference attacks have been inconclusive, implying potential robustness of MLMs to privacy attacks.In this work, we posit that prior attempts were inconclusive because they based their attack solely on the MLM’s model score. We devise a stronger membership inference attack based on likelihood ratio hypothesis testing that involves an additional reference MLM to more accurately quantify the privacy risks of memorization in MLMs. We show that masked language models are indeed susceptible to likelihood ratio membership inference attacks: Our empirical results, on models trained on medical notes, show that our attack improves the AUC of prior membership inference attacks from 0.66 to an alarmingly high 0.90 level.</abstract>
<identifier type="citekey">mireshghallah-etal-2022-quantifying</identifier>
<identifier type="doi">10.18653/v1/2022.emnlp-main.570</identifier>
<location>
<url>https://aclanthology.org/2022.emnlp-main.570</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>8332</start>
<end>8347</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Quantifying Privacy Risks of Masked Language Models Using Membership Inference Attacks
%A Mireshghallah, Fatemehsadat
%A Goyal, Kartik
%A Uniyal, Archit
%A Berg-Kirkpatrick, Taylor
%A Shokri, Reza
%Y Goldberg, Yoav
%Y Kozareva, Zornitsa
%Y Zhang, Yue
%S Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates
%F mireshghallah-etal-2022-quantifying
%X The wide adoption and application of Masked language models (MLMs) on sensitive data (from legal to medical) necessitates a thorough quantitative investigation into their privacy vulnerabilities. Prior attempts at measuring leakage of MLMs via membership inference attacks have been inconclusive, implying potential robustness of MLMs to privacy attacks.In this work, we posit that prior attempts were inconclusive because they based their attack solely on the MLM’s model score. We devise a stronger membership inference attack based on likelihood ratio hypothesis testing that involves an additional reference MLM to more accurately quantify the privacy risks of memorization in MLMs. We show that masked language models are indeed susceptible to likelihood ratio membership inference attacks: Our empirical results, on models trained on medical notes, show that our attack improves the AUC of prior membership inference attacks from 0.66 to an alarmingly high 0.90 level.
%R 10.18653/v1/2022.emnlp-main.570
%U https://aclanthology.org/2022.emnlp-main.570
%U https://doi.org/10.18653/v1/2022.emnlp-main.570
%P 8332-8347
Markdown (Informal)
[Quantifying Privacy Risks of Masked Language Models Using Membership Inference Attacks](https://aclanthology.org/2022.emnlp-main.570) (Mireshghallah et al., EMNLP 2022)
ACL