@inproceedings{wahle-etal-2022-large,
title = "How Large Language Models are Transforming Machine-Paraphrase Plagiarism",
author = "Wahle, Jan Philip and
Ruas, Terry and
Kirstein, Frederic and
Gipp, Bela",
editor = "Goldberg, Yoav and
Kozareva, Zornitsa and
Zhang, Yue",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.emnlp-main.62/",
doi = "10.18653/v1/2022.emnlp-main.62",
pages = "952--963",
abstract = "The recent success of large language models for text generation poses a severe threat to academic integrity, as plagiarists can generate realistic paraphrases indistinguishable from original work.However, the role of large autoregressive models in generating machine-paraphrased plagiarism and their detection is still incipient in the literature.This work explores T5 and GPT3 for machine-paraphrase generation on scientific articles from arXiv, student theses, and Wikipedia.We evaluate the detection performance of six automated solutions and one commercial plagiarism detection software and perform a human study with 105 participants regarding their detection performance and the quality of generated examples.Our results suggest that large language models can rewrite text humans have difficulty identifying as machine-paraphrased (53{\%} mean acc.).Human experts rate the quality of paraphrases generated by GPT-3 as high as original texts (clarity 4.0/5, fluency 4.2/5, coherence 3.8/5).The best-performing detection model (GPT-3) achieves 66{\%} F1-score in detecting paraphrases.We make our code, data, and findings publicly available to facilitate the development of detection solutions."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wahle-etal-2022-large">
<titleInfo>
<title>How Large Language Models are Transforming Machine-Paraphrase Plagiarism</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="given">Philip</namePart>
<namePart type="family">Wahle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Terry</namePart>
<namePart type="family">Ruas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frederic</namePart>
<namePart type="family">Kirstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bela</namePart>
<namePart type="family">Gipp</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Goldberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zornitsa</namePart>
<namePart type="family">Kozareva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The recent success of large language models for text generation poses a severe threat to academic integrity, as plagiarists can generate realistic paraphrases indistinguishable from original work.However, the role of large autoregressive models in generating machine-paraphrased plagiarism and their detection is still incipient in the literature.This work explores T5 and GPT3 for machine-paraphrase generation on scientific articles from arXiv, student theses, and Wikipedia.We evaluate the detection performance of six automated solutions and one commercial plagiarism detection software and perform a human study with 105 participants regarding their detection performance and the quality of generated examples.Our results suggest that large language models can rewrite text humans have difficulty identifying as machine-paraphrased (53% mean acc.).Human experts rate the quality of paraphrases generated by GPT-3 as high as original texts (clarity 4.0/5, fluency 4.2/5, coherence 3.8/5).The best-performing detection model (GPT-3) achieves 66% F1-score in detecting paraphrases.We make our code, data, and findings publicly available to facilitate the development of detection solutions.</abstract>
<identifier type="citekey">wahle-etal-2022-large</identifier>
<identifier type="doi">10.18653/v1/2022.emnlp-main.62</identifier>
<location>
<url>https://aclanthology.org/2022.emnlp-main.62/</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>952</start>
<end>963</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T How Large Language Models are Transforming Machine-Paraphrase Plagiarism
%A Wahle, Jan Philip
%A Ruas, Terry
%A Kirstein, Frederic
%A Gipp, Bela
%Y Goldberg, Yoav
%Y Kozareva, Zornitsa
%Y Zhang, Yue
%S Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates
%F wahle-etal-2022-large
%X The recent success of large language models for text generation poses a severe threat to academic integrity, as plagiarists can generate realistic paraphrases indistinguishable from original work.However, the role of large autoregressive models in generating machine-paraphrased plagiarism and their detection is still incipient in the literature.This work explores T5 and GPT3 for machine-paraphrase generation on scientific articles from arXiv, student theses, and Wikipedia.We evaluate the detection performance of six automated solutions and one commercial plagiarism detection software and perform a human study with 105 participants regarding their detection performance and the quality of generated examples.Our results suggest that large language models can rewrite text humans have difficulty identifying as machine-paraphrased (53% mean acc.).Human experts rate the quality of paraphrases generated by GPT-3 as high as original texts (clarity 4.0/5, fluency 4.2/5, coherence 3.8/5).The best-performing detection model (GPT-3) achieves 66% F1-score in detecting paraphrases.We make our code, data, and findings publicly available to facilitate the development of detection solutions.
%R 10.18653/v1/2022.emnlp-main.62
%U https://aclanthology.org/2022.emnlp-main.62/
%U https://doi.org/10.18653/v1/2022.emnlp-main.62
%P 952-963
Markdown (Informal)
[How Large Language Models are Transforming Machine-Paraphrase Plagiarism](https://aclanthology.org/2022.emnlp-main.62/) (Wahle et al., EMNLP 2022)
ACL