@inproceedings{pouran-ben-veyseh-etal-2022-transfer,
title = "Transfer Learning and Prediction Consistency for Detecting Offensive Spans of Text",
author = "Pouran Ben Veyseh, Amir and
Xu, Ning and
Tran, Quan and
Manjunatha, Varun and
Dernoncourt, Franck and
Nguyen, Thien",
editor = "Muresan, Smaranda and
Nakov, Preslav and
Villavicencio, Aline",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2022",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.findings-acl.128",
doi = "10.18653/v1/2022.findings-acl.128",
pages = "1630--1637",
abstract = "Toxic span detection is the task of recognizing offensive spans in a text snippet. Although there has been prior work on classifying text snippets as offensive or not, the task of recognizing spans responsible for the toxicity of a text is not explored yet. In this work, we introduce a novel multi-task framework for toxic span detection in which the model seeks to simultaneously predict offensive words and opinion phrases to leverage their inter-dependencies and improve the performance. Moreover, we introduce a novel regularization mechanism to encourage the consistency of the model predictions across similar inputs for toxic span detection. Our extensive experiments demonstrate the effectiveness of the proposed model compared to strong baselines.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pouran-ben-veyseh-etal-2022-transfer">
<titleInfo>
<title>Transfer Learning and Prediction Consistency for Detecting Offensive Spans of Text</title>
</titleInfo>
<name type="personal">
<namePart type="given">Amir</namePart>
<namePart type="family">Pouran Ben Veyseh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ning</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Quan</namePart>
<namePart type="family">Tran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Varun</namePart>
<namePart type="family">Manjunatha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Franck</namePart>
<namePart type="family">Dernoncourt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thien</namePart>
<namePart type="family">Nguyen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2022</title>
</titleInfo>
<name type="personal">
<namePart type="given">Smaranda</namePart>
<namePart type="family">Muresan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aline</namePart>
<namePart type="family">Villavicencio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Toxic span detection is the task of recognizing offensive spans in a text snippet. Although there has been prior work on classifying text snippets as offensive or not, the task of recognizing spans responsible for the toxicity of a text is not explored yet. In this work, we introduce a novel multi-task framework for toxic span detection in which the model seeks to simultaneously predict offensive words and opinion phrases to leverage their inter-dependencies and improve the performance. Moreover, we introduce a novel regularization mechanism to encourage the consistency of the model predictions across similar inputs for toxic span detection. Our extensive experiments demonstrate the effectiveness of the proposed model compared to strong baselines.</abstract>
<identifier type="citekey">pouran-ben-veyseh-etal-2022-transfer</identifier>
<identifier type="doi">10.18653/v1/2022.findings-acl.128</identifier>
<location>
<url>https://aclanthology.org/2022.findings-acl.128</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>1630</start>
<end>1637</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Transfer Learning and Prediction Consistency for Detecting Offensive Spans of Text
%A Pouran Ben Veyseh, Amir
%A Xu, Ning
%A Tran, Quan
%A Manjunatha, Varun
%A Dernoncourt, Franck
%A Nguyen, Thien
%Y Muresan, Smaranda
%Y Nakov, Preslav
%Y Villavicencio, Aline
%S Findings of the Association for Computational Linguistics: ACL 2022
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F pouran-ben-veyseh-etal-2022-transfer
%X Toxic span detection is the task of recognizing offensive spans in a text snippet. Although there has been prior work on classifying text snippets as offensive or not, the task of recognizing spans responsible for the toxicity of a text is not explored yet. In this work, we introduce a novel multi-task framework for toxic span detection in which the model seeks to simultaneously predict offensive words and opinion phrases to leverage their inter-dependencies and improve the performance. Moreover, we introduce a novel regularization mechanism to encourage the consistency of the model predictions across similar inputs for toxic span detection. Our extensive experiments demonstrate the effectiveness of the proposed model compared to strong baselines.
%R 10.18653/v1/2022.findings-acl.128
%U https://aclanthology.org/2022.findings-acl.128
%U https://doi.org/10.18653/v1/2022.findings-acl.128
%P 1630-1637
Markdown (Informal)
[Transfer Learning and Prediction Consistency for Detecting Offensive Spans of Text](https://aclanthology.org/2022.findings-acl.128) (Pouran Ben Veyseh et al., Findings 2022)
ACL