@inproceedings{nagata-etal-2022-exploring,
title = "Exploring the Capacity of a Large-scale Masked Language Model to Recognize Grammatical Errors",
author = "Nagata, Ryo and
Kimura, Manabu and
Hanawa, Kazuaki",
editor = "Muresan, Smaranda and
Nakov, Preslav and
Villavicencio, Aline",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2022",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.findings-acl.324/",
doi = "10.18653/v1/2022.findings-acl.324",
pages = "4107--4118",
abstract = "In this paper, we explore the capacity of a language model-based method for grammatical error detection in detail. We first show that 5 to 10{\%} of training data are enough for a BERT-based error detection method to achieve performance equivalent to what a non-language model-based method can achieve with the full training data; recall improves much faster with respect to training data size in the BERT-based method than in the non-language model method. This suggests that (i) the BERT-based method should have a good knowledge of the grammar required to recognize certain types of error and that (ii) it can transform the knowledge into error detection rules by fine-tuning with few training samples, which explains its high generalization ability in grammatical error detection. We further show with pseudo error data that it actually exhibits such nice properties in learning rules for recognizing various types of error. Finally, based on these findings, we discuss a cost-effective method for detecting grammatical errors with feedback comments explaining relevant grammatical rules to learners."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nagata-etal-2022-exploring">
<titleInfo>
<title>Exploring the Capacity of a Large-scale Masked Language Model to Recognize Grammatical Errors</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ryo</namePart>
<namePart type="family">Nagata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manabu</namePart>
<namePart type="family">Kimura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kazuaki</namePart>
<namePart type="family">Hanawa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2022</title>
</titleInfo>
<name type="personal">
<namePart type="given">Smaranda</namePart>
<namePart type="family">Muresan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aline</namePart>
<namePart type="family">Villavicencio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we explore the capacity of a language model-based method for grammatical error detection in detail. We first show that 5 to 10% of training data are enough for a BERT-based error detection method to achieve performance equivalent to what a non-language model-based method can achieve with the full training data; recall improves much faster with respect to training data size in the BERT-based method than in the non-language model method. This suggests that (i) the BERT-based method should have a good knowledge of the grammar required to recognize certain types of error and that (ii) it can transform the knowledge into error detection rules by fine-tuning with few training samples, which explains its high generalization ability in grammatical error detection. We further show with pseudo error data that it actually exhibits such nice properties in learning rules for recognizing various types of error. Finally, based on these findings, we discuss a cost-effective method for detecting grammatical errors with feedback comments explaining relevant grammatical rules to learners.</abstract>
<identifier type="citekey">nagata-etal-2022-exploring</identifier>
<identifier type="doi">10.18653/v1/2022.findings-acl.324</identifier>
<location>
<url>https://aclanthology.org/2022.findings-acl.324/</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>4107</start>
<end>4118</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Exploring the Capacity of a Large-scale Masked Language Model to Recognize Grammatical Errors
%A Nagata, Ryo
%A Kimura, Manabu
%A Hanawa, Kazuaki
%Y Muresan, Smaranda
%Y Nakov, Preslav
%Y Villavicencio, Aline
%S Findings of the Association for Computational Linguistics: ACL 2022
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F nagata-etal-2022-exploring
%X In this paper, we explore the capacity of a language model-based method for grammatical error detection in detail. We first show that 5 to 10% of training data are enough for a BERT-based error detection method to achieve performance equivalent to what a non-language model-based method can achieve with the full training data; recall improves much faster with respect to training data size in the BERT-based method than in the non-language model method. This suggests that (i) the BERT-based method should have a good knowledge of the grammar required to recognize certain types of error and that (ii) it can transform the knowledge into error detection rules by fine-tuning with few training samples, which explains its high generalization ability in grammatical error detection. We further show with pseudo error data that it actually exhibits such nice properties in learning rules for recognizing various types of error. Finally, based on these findings, we discuss a cost-effective method for detecting grammatical errors with feedback comments explaining relevant grammatical rules to learners.
%R 10.18653/v1/2022.findings-acl.324
%U https://aclanthology.org/2022.findings-acl.324/
%U https://doi.org/10.18653/v1/2022.findings-acl.324
%P 4107-4118
Markdown (Informal)
[Exploring the Capacity of a Large-scale Masked Language Model to Recognize Grammatical Errors](https://aclanthology.org/2022.findings-acl.324/) (Nagata et al., Findings 2022)
ACL