@inproceedings{guo-etal-2022-automatic,
title = "Automatic Song Translation for Tonal Languages",
author = "Guo, Fenfei and
Zhang, Chen and
Zhang, Zhirui and
He, Qixin and
Zhang, Kejun and
Xie, Jun and
Boyd-Graber, Jordan",
editor = "Muresan, Smaranda and
Nakov, Preslav and
Villavicencio, Aline",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2022",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.findings-acl.60/",
doi = "10.18653/v1/2022.findings-acl.60",
pages = "729--743",
abstract = "This paper develops automatic song translation (AST) for tonal languages and addresses the unique challenge of aligning words' tones with melody of a song in addition to conveying the original meaning. We propose three criteria for effective AST{---}preserving meaning, singability and intelligibility{---}and design metrics for these criteria. We develop a new benchmark for English{--}Mandarin song translation and develop an unsupervised AST system, Guided AliGnment for Automatic Song Translation (GagaST), which combines pre-training with three decoding constraints. Both automatic and human evaluations show GagaST successfully balances semantics and singability."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="guo-etal-2022-automatic">
<titleInfo>
<title>Automatic Song Translation for Tonal Languages</title>
</titleInfo>
<name type="personal">
<namePart type="given">Fenfei</namePart>
<namePart type="family">Guo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chen</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhirui</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qixin</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kejun</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun</namePart>
<namePart type="family">Xie</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Boyd-Graber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2022</title>
</titleInfo>
<name type="personal">
<namePart type="given">Smaranda</namePart>
<namePart type="family">Muresan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aline</namePart>
<namePart type="family">Villavicencio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper develops automatic song translation (AST) for tonal languages and addresses the unique challenge of aligning words’ tones with melody of a song in addition to conveying the original meaning. We propose three criteria for effective AST—preserving meaning, singability and intelligibility—and design metrics for these criteria. We develop a new benchmark for English–Mandarin song translation and develop an unsupervised AST system, Guided AliGnment for Automatic Song Translation (GagaST), which combines pre-training with three decoding constraints. Both automatic and human evaluations show GagaST successfully balances semantics and singability.</abstract>
<identifier type="citekey">guo-etal-2022-automatic</identifier>
<identifier type="doi">10.18653/v1/2022.findings-acl.60</identifier>
<location>
<url>https://aclanthology.org/2022.findings-acl.60/</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>729</start>
<end>743</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Automatic Song Translation for Tonal Languages
%A Guo, Fenfei
%A Zhang, Chen
%A Zhang, Zhirui
%A He, Qixin
%A Zhang, Kejun
%A Xie, Jun
%A Boyd-Graber, Jordan
%Y Muresan, Smaranda
%Y Nakov, Preslav
%Y Villavicencio, Aline
%S Findings of the Association for Computational Linguistics: ACL 2022
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F guo-etal-2022-automatic
%X This paper develops automatic song translation (AST) for tonal languages and addresses the unique challenge of aligning words’ tones with melody of a song in addition to conveying the original meaning. We propose three criteria for effective AST—preserving meaning, singability and intelligibility—and design metrics for these criteria. We develop a new benchmark for English–Mandarin song translation and develop an unsupervised AST system, Guided AliGnment for Automatic Song Translation (GagaST), which combines pre-training with three decoding constraints. Both automatic and human evaluations show GagaST successfully balances semantics and singability.
%R 10.18653/v1/2022.findings-acl.60
%U https://aclanthology.org/2022.findings-acl.60/
%U https://doi.org/10.18653/v1/2022.findings-acl.60
%P 729-743
Markdown (Informal)
[Automatic Song Translation for Tonal Languages](https://aclanthology.org/2022.findings-acl.60/) (Guo et al., Findings 2022)
ACL
- Fenfei Guo, Chen Zhang, Zhirui Zhang, Qixin He, Kejun Zhang, Jun Xie, and Jordan Boyd-Graber. 2022. Automatic Song Translation for Tonal Languages. In Findings of the Association for Computational Linguistics: ACL 2022, pages 729–743, Dublin, Ireland. Association for Computational Linguistics.