@inproceedings{lee-etal-2022-topic,
title = "Topic Taxonomy Expansion via Hierarchy-Aware Topic Phrase Generation",
author = "Lee, Dongha and
Shen, Jiaming and
Lee, Seonghyeon and
Yoon, Susik and
Yu, Hwanjo and
Han, Jiawei",
editor = "Goldberg, Yoav and
Kozareva, Zornitsa and
Zhang, Yue",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2022",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.findings-emnlp.122",
doi = "10.18653/v1/2022.findings-emnlp.122",
pages = "1687--1700",
abstract = "Topic taxonomies display hierarchical topic structures of a text corpus and provide topical knowledge to enhance various NLP applications. To dynamically incorporate new topic information, several recent studies have tried to expand (or complete) a topic taxonomy by inserting emerging topics identified in a set of new documents. However, existing methods focus only on frequent terms in documents and the local topic-subtopic relations in a taxonomy, which leads to limited topic term coverage and fails to model the global taxonomy structure. In this work, we propose a novel framework for topic taxonomy expansion, named TopicExpan, which directly generates topic-related terms belonging to new topics. Specifically, TopicExpan leverages the hierarchical relation structure surrounding a new topic and the textual content of an input document for topic term generation. This approach encourages newly-inserted topics to further cover important but less frequent terms as well as to keep their relation consistency within the taxonomy. Experimental results on two real-world text corpora show that TopicExpan significantly outperforms other baseline methods in terms of the quality of output taxonomies.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lee-etal-2022-topic">
<titleInfo>
<title>Topic Taxonomy Expansion via Hierarchy-Aware Topic Phrase Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dongha</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiaming</namePart>
<namePart type="family">Shen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seonghyeon</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Susik</namePart>
<namePart type="family">Yoon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hwanjo</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiawei</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2022</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Goldberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zornitsa</namePart>
<namePart type="family">Kozareva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Topic taxonomies display hierarchical topic structures of a text corpus and provide topical knowledge to enhance various NLP applications. To dynamically incorporate new topic information, several recent studies have tried to expand (or complete) a topic taxonomy by inserting emerging topics identified in a set of new documents. However, existing methods focus only on frequent terms in documents and the local topic-subtopic relations in a taxonomy, which leads to limited topic term coverage and fails to model the global taxonomy structure. In this work, we propose a novel framework for topic taxonomy expansion, named TopicExpan, which directly generates topic-related terms belonging to new topics. Specifically, TopicExpan leverages the hierarchical relation structure surrounding a new topic and the textual content of an input document for topic term generation. This approach encourages newly-inserted topics to further cover important but less frequent terms as well as to keep their relation consistency within the taxonomy. Experimental results on two real-world text corpora show that TopicExpan significantly outperforms other baseline methods in terms of the quality of output taxonomies.</abstract>
<identifier type="citekey">lee-etal-2022-topic</identifier>
<identifier type="doi">10.18653/v1/2022.findings-emnlp.122</identifier>
<location>
<url>https://aclanthology.org/2022.findings-emnlp.122</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>1687</start>
<end>1700</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Topic Taxonomy Expansion via Hierarchy-Aware Topic Phrase Generation
%A Lee, Dongha
%A Shen, Jiaming
%A Lee, Seonghyeon
%A Yoon, Susik
%A Yu, Hwanjo
%A Han, Jiawei
%Y Goldberg, Yoav
%Y Kozareva, Zornitsa
%Y Zhang, Yue
%S Findings of the Association for Computational Linguistics: EMNLP 2022
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates
%F lee-etal-2022-topic
%X Topic taxonomies display hierarchical topic structures of a text corpus and provide topical knowledge to enhance various NLP applications. To dynamically incorporate new topic information, several recent studies have tried to expand (or complete) a topic taxonomy by inserting emerging topics identified in a set of new documents. However, existing methods focus only on frequent terms in documents and the local topic-subtopic relations in a taxonomy, which leads to limited topic term coverage and fails to model the global taxonomy structure. In this work, we propose a novel framework for topic taxonomy expansion, named TopicExpan, which directly generates topic-related terms belonging to new topics. Specifically, TopicExpan leverages the hierarchical relation structure surrounding a new topic and the textual content of an input document for topic term generation. This approach encourages newly-inserted topics to further cover important but less frequent terms as well as to keep their relation consistency within the taxonomy. Experimental results on two real-world text corpora show that TopicExpan significantly outperforms other baseline methods in terms of the quality of output taxonomies.
%R 10.18653/v1/2022.findings-emnlp.122
%U https://aclanthology.org/2022.findings-emnlp.122
%U https://doi.org/10.18653/v1/2022.findings-emnlp.122
%P 1687-1700
Markdown (Informal)
[Topic Taxonomy Expansion via Hierarchy-Aware Topic Phrase Generation](https://aclanthology.org/2022.findings-emnlp.122) (Lee et al., Findings 2022)
ACL