@inproceedings{shang-etal-2022-know,
title = "{\textquotedblleft}{I} Know Who You Are{\textquotedblright}: Character-Based Features for Conversational Humor Recognition in {C}hinese",
author = "Shang, Wenbo and
Zhao, Jiangjiang and
Wang, Zezhong and
Li, Binyang and
Yang, Fangchun and
Wong, Kam-Fai",
editor = "Goldberg, Yoav and
Kozareva, Zornitsa and
Zhang, Yue",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2022",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.findings-emnlp.212/",
doi = "10.18653/v1/2022.findings-emnlp.212",
pages = "2927--2932",
abstract = "Humor plays an important role in our daily life, as it is an essential and fascinating element in the communication between persons. Therefore, how to recognize punchlines from the dialogue, i.e. conversational humor recognition, has attracted much interest of computational linguistics communities. However, most existing work attempted to understand the conversational humor by analyzing the contextual information of the dialogue, but neglected the character of the interlocutor, such as age, gender, occupation, and so on. For instance, the same utterance could bring out humorous from a serious person, but may be a plain expression from a naive person. To this end, this paper proposes a Character Fusion Conversational Humor Recognition model (CFCHR) to explore character information to recognize conversational humor. CFCHR utilizes a multi-task learning framework that unifies two highly pertinent tasks, i.e., character extraction and punchline identification. Based on deep neural networks, we trained both tasks jointly by sharing weight to extract the common and task-invariant features while each task could still learn its task-specific features. Experiments were conducted on Chinese sitcoms corpus, which consisted of 12,677 utterances from 22 characters. The experimental results demonstrated that CFCHR could achieve 33.08{\%} improvements in terms of F1-score over some strong baselines, and proved the effectiveness of the character information to identify the punchlines."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="shang-etal-2022-know">
<titleInfo>
<title>“I Know Who You Are”: Character-Based Features for Conversational Humor Recognition in Chinese</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wenbo</namePart>
<namePart type="family">Shang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiangjiang</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zezhong</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Binyang</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fangchun</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kam-Fai</namePart>
<namePart type="family">Wong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2022</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Goldberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zornitsa</namePart>
<namePart type="family">Kozareva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Humor plays an important role in our daily life, as it is an essential and fascinating element in the communication between persons. Therefore, how to recognize punchlines from the dialogue, i.e. conversational humor recognition, has attracted much interest of computational linguistics communities. However, most existing work attempted to understand the conversational humor by analyzing the contextual information of the dialogue, but neglected the character of the interlocutor, such as age, gender, occupation, and so on. For instance, the same utterance could bring out humorous from a serious person, but may be a plain expression from a naive person. To this end, this paper proposes a Character Fusion Conversational Humor Recognition model (CFCHR) to explore character information to recognize conversational humor. CFCHR utilizes a multi-task learning framework that unifies two highly pertinent tasks, i.e., character extraction and punchline identification. Based on deep neural networks, we trained both tasks jointly by sharing weight to extract the common and task-invariant features while each task could still learn its task-specific features. Experiments were conducted on Chinese sitcoms corpus, which consisted of 12,677 utterances from 22 characters. The experimental results demonstrated that CFCHR could achieve 33.08% improvements in terms of F1-score over some strong baselines, and proved the effectiveness of the character information to identify the punchlines.</abstract>
<identifier type="citekey">shang-etal-2022-know</identifier>
<identifier type="doi">10.18653/v1/2022.findings-emnlp.212</identifier>
<location>
<url>https://aclanthology.org/2022.findings-emnlp.212/</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>2927</start>
<end>2932</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T “I Know Who You Are”: Character-Based Features for Conversational Humor Recognition in Chinese
%A Shang, Wenbo
%A Zhao, Jiangjiang
%A Wang, Zezhong
%A Li, Binyang
%A Yang, Fangchun
%A Wong, Kam-Fai
%Y Goldberg, Yoav
%Y Kozareva, Zornitsa
%Y Zhang, Yue
%S Findings of the Association for Computational Linguistics: EMNLP 2022
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates
%F shang-etal-2022-know
%X Humor plays an important role in our daily life, as it is an essential and fascinating element in the communication between persons. Therefore, how to recognize punchlines from the dialogue, i.e. conversational humor recognition, has attracted much interest of computational linguistics communities. However, most existing work attempted to understand the conversational humor by analyzing the contextual information of the dialogue, but neglected the character of the interlocutor, such as age, gender, occupation, and so on. For instance, the same utterance could bring out humorous from a serious person, but may be a plain expression from a naive person. To this end, this paper proposes a Character Fusion Conversational Humor Recognition model (CFCHR) to explore character information to recognize conversational humor. CFCHR utilizes a multi-task learning framework that unifies two highly pertinent tasks, i.e., character extraction and punchline identification. Based on deep neural networks, we trained both tasks jointly by sharing weight to extract the common and task-invariant features while each task could still learn its task-specific features. Experiments were conducted on Chinese sitcoms corpus, which consisted of 12,677 utterances from 22 characters. The experimental results demonstrated that CFCHR could achieve 33.08% improvements in terms of F1-score over some strong baselines, and proved the effectiveness of the character information to identify the punchlines.
%R 10.18653/v1/2022.findings-emnlp.212
%U https://aclanthology.org/2022.findings-emnlp.212/
%U https://doi.org/10.18653/v1/2022.findings-emnlp.212
%P 2927-2932
Markdown (Informal)
[“I Know Who You Are”: Character-Based Features for Conversational Humor Recognition in Chinese](https://aclanthology.org/2022.findings-emnlp.212/) (Shang et al., Findings 2022)
ACL