@inproceedings{kumar-etal-2022-utilizing,
title = "On Utilizing Constituent Language Resources to Improve Downstream Tasks in {H}inglish",
author = "Kumar, Vishwajeet and
Murthy, Rudra and
Dhamecha, Tejas",
editor = "Goldberg, Yoav and
Kozareva, Zornitsa and
Zhang, Yue",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2022",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.findings-emnlp.283/",
doi = "10.18653/v1/2022.findings-emnlp.283",
pages = "3859--3865",
abstract = "Performance of downstream NLP tasks on code-switched Hindi-English (aka ) continues to remain a significant challenge. Intuitively, Hindi and English corpora should aid improve task performance on Hinglish. We show that meta-learning framework can effectively utilize the the labelled resources of the downstream tasks in the constituent languages. The proposed approach improves the performance on downstream tasks on code-switched language. We experiment with code-switching benchmark GLUECoS and report significant improvements."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kumar-etal-2022-utilizing">
<titleInfo>
<title>On Utilizing Constituent Language Resources to Improve Downstream Tasks in Hinglish</title>
</titleInfo>
<name type="personal">
<namePart type="given">Vishwajeet</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rudra</namePart>
<namePart type="family">Murthy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tejas</namePart>
<namePart type="family">Dhamecha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2022</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Goldberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zornitsa</namePart>
<namePart type="family">Kozareva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Performance of downstream NLP tasks on code-switched Hindi-English (aka ) continues to remain a significant challenge. Intuitively, Hindi and English corpora should aid improve task performance on Hinglish. We show that meta-learning framework can effectively utilize the the labelled resources of the downstream tasks in the constituent languages. The proposed approach improves the performance on downstream tasks on code-switched language. We experiment with code-switching benchmark GLUECoS and report significant improvements.</abstract>
<identifier type="citekey">kumar-etal-2022-utilizing</identifier>
<identifier type="doi">10.18653/v1/2022.findings-emnlp.283</identifier>
<location>
<url>https://aclanthology.org/2022.findings-emnlp.283/</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>3859</start>
<end>3865</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T On Utilizing Constituent Language Resources to Improve Downstream Tasks in Hinglish
%A Kumar, Vishwajeet
%A Murthy, Rudra
%A Dhamecha, Tejas
%Y Goldberg, Yoav
%Y Kozareva, Zornitsa
%Y Zhang, Yue
%S Findings of the Association for Computational Linguistics: EMNLP 2022
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates
%F kumar-etal-2022-utilizing
%X Performance of downstream NLP tasks on code-switched Hindi-English (aka ) continues to remain a significant challenge. Intuitively, Hindi and English corpora should aid improve task performance on Hinglish. We show that meta-learning framework can effectively utilize the the labelled resources of the downstream tasks in the constituent languages. The proposed approach improves the performance on downstream tasks on code-switched language. We experiment with code-switching benchmark GLUECoS and report significant improvements.
%R 10.18653/v1/2022.findings-emnlp.283
%U https://aclanthology.org/2022.findings-emnlp.283/
%U https://doi.org/10.18653/v1/2022.findings-emnlp.283
%P 3859-3865
Markdown (Informal)
[On Utilizing Constituent Language Resources to Improve Downstream Tasks in Hinglish](https://aclanthology.org/2022.findings-emnlp.283/) (Kumar et al., Findings 2022)
ACL