@inproceedings{helwe-etal-2022-tina,
title = "{TINA}: Textual Inference with Negation Augmentation",
author = "Helwe, Chadi and
Coumes, Simon and
Clavel, Chlo{\'e} and
Suchanek, Fabian",
editor = "Goldberg, Yoav and
Kozareva, Zornitsa and
Zhang, Yue",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2022",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.findings-emnlp.301/",
doi = "10.18653/v1/2022.findings-emnlp.301",
pages = "4086--4099",
abstract = "Transformer-based language models achieve state-of-the-art results on several natural language processing tasks. One of these is textual entailment, i.e., the task of determining whether a premise logically entails a hypothesis. However, the models perform poorly on this task when the examples contain negations. In this paper, we propose a new definition of textual entailment that captures also negation. This allows us to develop TINA (Textual Inference with Negation Augmentation), a principled technique for negated data augmentation that can be combined with the unlikelihood loss function.Our experiments with different transformer-based models show that our method can significantly improve the performance of the models on textual entailment datasets with negation {--} without sacrificing performance on datasets without negation."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="helwe-etal-2022-tina">
<titleInfo>
<title>TINA: Textual Inference with Negation Augmentation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chadi</namePart>
<namePart type="family">Helwe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Simon</namePart>
<namePart type="family">Coumes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chloé</namePart>
<namePart type="family">Clavel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fabian</namePart>
<namePart type="family">Suchanek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2022</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Goldberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zornitsa</namePart>
<namePart type="family">Kozareva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Transformer-based language models achieve state-of-the-art results on several natural language processing tasks. One of these is textual entailment, i.e., the task of determining whether a premise logically entails a hypothesis. However, the models perform poorly on this task when the examples contain negations. In this paper, we propose a new definition of textual entailment that captures also negation. This allows us to develop TINA (Textual Inference with Negation Augmentation), a principled technique for negated data augmentation that can be combined with the unlikelihood loss function.Our experiments with different transformer-based models show that our method can significantly improve the performance of the models on textual entailment datasets with negation – without sacrificing performance on datasets without negation.</abstract>
<identifier type="citekey">helwe-etal-2022-tina</identifier>
<identifier type="doi">10.18653/v1/2022.findings-emnlp.301</identifier>
<location>
<url>https://aclanthology.org/2022.findings-emnlp.301/</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>4086</start>
<end>4099</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T TINA: Textual Inference with Negation Augmentation
%A Helwe, Chadi
%A Coumes, Simon
%A Clavel, Chloé
%A Suchanek, Fabian
%Y Goldberg, Yoav
%Y Kozareva, Zornitsa
%Y Zhang, Yue
%S Findings of the Association for Computational Linguistics: EMNLP 2022
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates
%F helwe-etal-2022-tina
%X Transformer-based language models achieve state-of-the-art results on several natural language processing tasks. One of these is textual entailment, i.e., the task of determining whether a premise logically entails a hypothesis. However, the models perform poorly on this task when the examples contain negations. In this paper, we propose a new definition of textual entailment that captures also negation. This allows us to develop TINA (Textual Inference with Negation Augmentation), a principled technique for negated data augmentation that can be combined with the unlikelihood loss function.Our experiments with different transformer-based models show that our method can significantly improve the performance of the models on textual entailment datasets with negation – without sacrificing performance on datasets without negation.
%R 10.18653/v1/2022.findings-emnlp.301
%U https://aclanthology.org/2022.findings-emnlp.301/
%U https://doi.org/10.18653/v1/2022.findings-emnlp.301
%P 4086-4099
Markdown (Informal)
[TINA: Textual Inference with Negation Augmentation](https://aclanthology.org/2022.findings-emnlp.301/) (Helwe et al., Findings 2022)
ACL
- Chadi Helwe, Simon Coumes, Chloé Clavel, and Fabian Suchanek. 2022. TINA: Textual Inference with Negation Augmentation. In Findings of the Association for Computational Linguistics: EMNLP 2022, pages 4086–4099, Abu Dhabi, United Arab Emirates. Association for Computational Linguistics.