@inproceedings{chimoto-bassett-2022-comet,
title = "{COMET}-{QE} and Active Learning for Low-Resource Machine Translation",
author = "Chimoto, Everlyn and
Bassett, Bruce",
editor = "Goldberg, Yoav and
Kozareva, Zornitsa and
Zhang, Yue",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2022",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.findings-emnlp.348/",
doi = "10.18653/v1/2022.findings-emnlp.348",
pages = "4735--4740",
abstract = "Active learning aims to deliver maximum benefit when resources are scarce. We use COMET-QE, a reference-free evaluation metric, to select sentences for low-resource neural machine translation. Using Swahili, Kinyarwanda and Spanish for our experiments, we show that COMET-QE significantly outperforms two variants of Round Trip Translation Likelihood (RTTL) and random sentence selection by up to 5 BLEU points for 20k sentences selected by Active Learning on a 30k baseline. This suggests that COMET-QE is a powerful tool for sentence selection in the very low-resource limit."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chimoto-bassett-2022-comet">
<titleInfo>
<title>COMET-QE and Active Learning for Low-Resource Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Everlyn</namePart>
<namePart type="family">Chimoto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bruce</namePart>
<namePart type="family">Bassett</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2022</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Goldberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zornitsa</namePart>
<namePart type="family">Kozareva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Active learning aims to deliver maximum benefit when resources are scarce. We use COMET-QE, a reference-free evaluation metric, to select sentences for low-resource neural machine translation. Using Swahili, Kinyarwanda and Spanish for our experiments, we show that COMET-QE significantly outperforms two variants of Round Trip Translation Likelihood (RTTL) and random sentence selection by up to 5 BLEU points for 20k sentences selected by Active Learning on a 30k baseline. This suggests that COMET-QE is a powerful tool for sentence selection in the very low-resource limit.</abstract>
<identifier type="citekey">chimoto-bassett-2022-comet</identifier>
<identifier type="doi">10.18653/v1/2022.findings-emnlp.348</identifier>
<location>
<url>https://aclanthology.org/2022.findings-emnlp.348/</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>4735</start>
<end>4740</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T COMET-QE and Active Learning for Low-Resource Machine Translation
%A Chimoto, Everlyn
%A Bassett, Bruce
%Y Goldberg, Yoav
%Y Kozareva, Zornitsa
%Y Zhang, Yue
%S Findings of the Association for Computational Linguistics: EMNLP 2022
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates
%F chimoto-bassett-2022-comet
%X Active learning aims to deliver maximum benefit when resources are scarce. We use COMET-QE, a reference-free evaluation metric, to select sentences for low-resource neural machine translation. Using Swahili, Kinyarwanda and Spanish for our experiments, we show that COMET-QE significantly outperforms two variants of Round Trip Translation Likelihood (RTTL) and random sentence selection by up to 5 BLEU points for 20k sentences selected by Active Learning on a 30k baseline. This suggests that COMET-QE is a powerful tool for sentence selection in the very low-resource limit.
%R 10.18653/v1/2022.findings-emnlp.348
%U https://aclanthology.org/2022.findings-emnlp.348/
%U https://doi.org/10.18653/v1/2022.findings-emnlp.348
%P 4735-4740
Markdown (Informal)
[COMET-QE and Active Learning for Low-Resource Machine Translation](https://aclanthology.org/2022.findings-emnlp.348/) (Chimoto & Bassett, Findings 2022)
ACL