@inproceedings{hofmann-etal-2022-modeling,
title = "Modeling Ideological Salience and Framing in Polarized Online Groups with Graph Neural Networks and Structured Sparsity",
author = "Hofmann, Valentin and
Dong, Xiaowen and
Pierrehumbert, Janet and
Schuetze, Hinrich",
editor = "Carpuat, Marine and
de Marneffe, Marie-Catherine and
Meza Ruiz, Ivan Vladimir",
booktitle = "Findings of the Association for Computational Linguistics: NAACL 2022",
month = jul,
year = "2022",
address = "Seattle, United States",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.findings-naacl.41",
doi = "10.18653/v1/2022.findings-naacl.41",
pages = "536--550",
abstract = "The increasing polarization of online political discourse calls for computational tools that automatically detect and monitor ideological divides in social media. We introduce a minimally supervised method that leverages the network structure of online discussion forums, specifically Reddit, to detect polarized concepts. We model polarization along the dimensions of salience and framing, drawing upon insights from moral psychology. Our architecture combines graph neural networks with structured sparsity learning and results in representations for concepts and subreddits that capture temporal ideological dynamics such as right-wing and left-wing radicalization.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hofmann-etal-2022-modeling">
<titleInfo>
<title>Modeling Ideological Salience and Framing in Polarized Online Groups with Graph Neural Networks and Structured Sparsity</title>
</titleInfo>
<name type="personal">
<namePart type="given">Valentin</namePart>
<namePart type="family">Hofmann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaowen</namePart>
<namePart type="family">Dong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Janet</namePart>
<namePart type="family">Pierrehumbert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hinrich</namePart>
<namePart type="family">Schuetze</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: NAACL 2022</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marie-Catherine</namePart>
<namePart type="family">de Marneffe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ivan</namePart>
<namePart type="given">Vladimir</namePart>
<namePart type="family">Meza Ruiz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Seattle, United States</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The increasing polarization of online political discourse calls for computational tools that automatically detect and monitor ideological divides in social media. We introduce a minimally supervised method that leverages the network structure of online discussion forums, specifically Reddit, to detect polarized concepts. We model polarization along the dimensions of salience and framing, drawing upon insights from moral psychology. Our architecture combines graph neural networks with structured sparsity learning and results in representations for concepts and subreddits that capture temporal ideological dynamics such as right-wing and left-wing radicalization.</abstract>
<identifier type="citekey">hofmann-etal-2022-modeling</identifier>
<identifier type="doi">10.18653/v1/2022.findings-naacl.41</identifier>
<location>
<url>https://aclanthology.org/2022.findings-naacl.41</url>
</location>
<part>
<date>2022-07</date>
<extent unit="page">
<start>536</start>
<end>550</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Modeling Ideological Salience and Framing in Polarized Online Groups with Graph Neural Networks and Structured Sparsity
%A Hofmann, Valentin
%A Dong, Xiaowen
%A Pierrehumbert, Janet
%A Schuetze, Hinrich
%Y Carpuat, Marine
%Y de Marneffe, Marie-Catherine
%Y Meza Ruiz, Ivan Vladimir
%S Findings of the Association for Computational Linguistics: NAACL 2022
%D 2022
%8 July
%I Association for Computational Linguistics
%C Seattle, United States
%F hofmann-etal-2022-modeling
%X The increasing polarization of online political discourse calls for computational tools that automatically detect and monitor ideological divides in social media. We introduce a minimally supervised method that leverages the network structure of online discussion forums, specifically Reddit, to detect polarized concepts. We model polarization along the dimensions of salience and framing, drawing upon insights from moral psychology. Our architecture combines graph neural networks with structured sparsity learning and results in representations for concepts and subreddits that capture temporal ideological dynamics such as right-wing and left-wing radicalization.
%R 10.18653/v1/2022.findings-naacl.41
%U https://aclanthology.org/2022.findings-naacl.41
%U https://doi.org/10.18653/v1/2022.findings-naacl.41
%P 536-550
Markdown (Informal)
[Modeling Ideological Salience and Framing in Polarized Online Groups with Graph Neural Networks and Structured Sparsity](https://aclanthology.org/2022.findings-naacl.41) (Hofmann et al., Findings 2022)
ACL