@inproceedings{li-etal-2022-stock,
title = "No Stock is an Island: Learning Internal and Relational Attributes of Stocks with Contrastive Learning",
author = "Li, Shicheng and
Li, Wei and
Zhang, Zhiyuan and
Bao, Ruihan and
Harimoto, Keiko and
Sun, Xu",
editor = "Chen, Chung-Chi and
Huang, Hen-Hsen and
Takamura, Hiroya and
Chen, Hsin-Hsi",
booktitle = "Proceedings of the Fourth Workshop on Financial Technology and Natural Language Processing (FinNLP)",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates (Hybrid)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.finnlp-1.20",
doi = "10.18653/v1/2022.finnlp-1.20",
pages = "147--153",
abstract = "Previous work has demonstrated the viability of applying deep learning techniques in the financial area. Recently, the task of stock embedding learning has been drawing attention from the research community, which aims to represent the characteristics of stocks with distributed vectors that can be used in various financial analysis scenarios. Existing approaches for learning stock embeddings either require expert knowledge, or mainly focus on the textual part of information corresponding to individual temporal movements. In this paper, we propose to model stock properties as the combination of internal attributes and relational attributes, which takes into consideration both the time-invariant properties of individual stocks and their movement patterns in relation to the market. To learn the two types of attributes from financial news and transaction data, we design several training objectives based on contrastive learning to extract and separate the long-term and temporary information in the data that are able to counter the inherent randomness of the stock market. Experiments and further analyses on portfolio optimization reveal the effectiveness of our method in extracting comprehensive stock information from various data sources.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-etal-2022-stock">
<titleInfo>
<title>No Stock is an Island: Learning Internal and Relational Attributes of Stocks with Contrastive Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shicheng</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhiyuan</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruihan</namePart>
<namePart type="family">Bao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Keiko</namePart>
<namePart type="family">Harimoto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xu</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourth Workshop on Financial Technology and Natural Language Processing (FinNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chung-Chi</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hen-Hsen</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hiroya</namePart>
<namePart type="family">Takamura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hsin-Hsi</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates (Hybrid)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Previous work has demonstrated the viability of applying deep learning techniques in the financial area. Recently, the task of stock embedding learning has been drawing attention from the research community, which aims to represent the characteristics of stocks with distributed vectors that can be used in various financial analysis scenarios. Existing approaches for learning stock embeddings either require expert knowledge, or mainly focus on the textual part of information corresponding to individual temporal movements. In this paper, we propose to model stock properties as the combination of internal attributes and relational attributes, which takes into consideration both the time-invariant properties of individual stocks and their movement patterns in relation to the market. To learn the two types of attributes from financial news and transaction data, we design several training objectives based on contrastive learning to extract and separate the long-term and temporary information in the data that are able to counter the inherent randomness of the stock market. Experiments and further analyses on portfolio optimization reveal the effectiveness of our method in extracting comprehensive stock information from various data sources.</abstract>
<identifier type="citekey">li-etal-2022-stock</identifier>
<identifier type="doi">10.18653/v1/2022.finnlp-1.20</identifier>
<location>
<url>https://aclanthology.org/2022.finnlp-1.20</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>147</start>
<end>153</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T No Stock is an Island: Learning Internal and Relational Attributes of Stocks with Contrastive Learning
%A Li, Shicheng
%A Li, Wei
%A Zhang, Zhiyuan
%A Bao, Ruihan
%A Harimoto, Keiko
%A Sun, Xu
%Y Chen, Chung-Chi
%Y Huang, Hen-Hsen
%Y Takamura, Hiroya
%Y Chen, Hsin-Hsi
%S Proceedings of the Fourth Workshop on Financial Technology and Natural Language Processing (FinNLP)
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates (Hybrid)
%F li-etal-2022-stock
%X Previous work has demonstrated the viability of applying deep learning techniques in the financial area. Recently, the task of stock embedding learning has been drawing attention from the research community, which aims to represent the characteristics of stocks with distributed vectors that can be used in various financial analysis scenarios. Existing approaches for learning stock embeddings either require expert knowledge, or mainly focus on the textual part of information corresponding to individual temporal movements. In this paper, we propose to model stock properties as the combination of internal attributes and relational attributes, which takes into consideration both the time-invariant properties of individual stocks and their movement patterns in relation to the market. To learn the two types of attributes from financial news and transaction data, we design several training objectives based on contrastive learning to extract and separate the long-term and temporary information in the data that are able to counter the inherent randomness of the stock market. Experiments and further analyses on portfolio optimization reveal the effectiveness of our method in extracting comprehensive stock information from various data sources.
%R 10.18653/v1/2022.finnlp-1.20
%U https://aclanthology.org/2022.finnlp-1.20
%U https://doi.org/10.18653/v1/2022.finnlp-1.20
%P 147-153
Markdown (Informal)
[No Stock is an Island: Learning Internal and Relational Attributes of Stocks with Contrastive Learning](https://aclanthology.org/2022.finnlp-1.20) (Li et al., FinNLP 2022)
ACL