@inproceedings{lee-etal-2022-mnlp,
title = "{MNLP} at {F}in{C}ausal2022: Nested {NER} with a Generative Model",
author = {Lee, Jooyeon and
Pham, Luan Huy and
Uzuner, {\"O}zlem},
editor = "El-Haj, Mahmoud and
Rayson, Paul and
Zmandar, Nadhem",
booktitle = "Proceedings of the 4th Financial Narrative Processing Workshop @LREC2022",
month = jun,
year = "2022",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2022.fnp-1.24/",
pages = "135--138",
abstract = "This paper describes work performed for the FinCasual 2022 Shared Task {\textquotedblleft}Financial Document Causality Detection{\textquotedblright} (FinCausal 2022). As the name implies, the task involves extraction of casual and consequential elements from financial text. Our approach focuses employing Nested NER using the Text-to-Text Transformer (T5) generative transformer models while applying different combinations of datasets and tagging methods. Our system reports accuracy of 79{\%} in Exact Match comparison and F-measure score of 92{\%} token level measurement."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lee-etal-2022-mnlp">
<titleInfo>
<title>MNLP at FinCausal2022: Nested NER with a Generative Model</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jooyeon</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luan</namePart>
<namePart type="given">Huy</namePart>
<namePart type="family">Pham</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Özlem</namePart>
<namePart type="family">Uzuner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 4th Financial Narrative Processing Workshop @LREC2022</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mahmoud</namePart>
<namePart type="family">El-Haj</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paul</namePart>
<namePart type="family">Rayson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nadhem</namePart>
<namePart type="family">Zmandar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes work performed for the FinCasual 2022 Shared Task “Financial Document Causality Detection” (FinCausal 2022). As the name implies, the task involves extraction of casual and consequential elements from financial text. Our approach focuses employing Nested NER using the Text-to-Text Transformer (T5) generative transformer models while applying different combinations of datasets and tagging methods. Our system reports accuracy of 79% in Exact Match comparison and F-measure score of 92% token level measurement.</abstract>
<identifier type="citekey">lee-etal-2022-mnlp</identifier>
<location>
<url>https://aclanthology.org/2022.fnp-1.24/</url>
</location>
<part>
<date>2022-06</date>
<extent unit="page">
<start>135</start>
<end>138</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T MNLP at FinCausal2022: Nested NER with a Generative Model
%A Lee, Jooyeon
%A Pham, Luan Huy
%A Uzuner, Özlem
%Y El-Haj, Mahmoud
%Y Rayson, Paul
%Y Zmandar, Nadhem
%S Proceedings of the 4th Financial Narrative Processing Workshop @LREC2022
%D 2022
%8 June
%I European Language Resources Association
%C Marseille, France
%F lee-etal-2022-mnlp
%X This paper describes work performed for the FinCasual 2022 Shared Task “Financial Document Causality Detection” (FinCausal 2022). As the name implies, the task involves extraction of casual and consequential elements from financial text. Our approach focuses employing Nested NER using the Text-to-Text Transformer (T5) generative transformer models while applying different combinations of datasets and tagging methods. Our system reports accuracy of 79% in Exact Match comparison and F-measure score of 92% token level measurement.
%U https://aclanthology.org/2022.fnp-1.24/
%P 135-138
Markdown (Informal)
[MNLP at FinCausal2022: Nested NER with a Generative Model](https://aclanthology.org/2022.fnp-1.24/) (Lee et al., FNP 2022)
ACL