@inproceedings{clive-etal-2022-control,
title = "Control Prefixes for Parameter-Efficient Text Generation",
author = "Clive, Jordan and
Cao, Kris and
Rei, Marek",
editor = "Bosselut, Antoine and
Chandu, Khyathi and
Dhole, Kaustubh and
Gangal, Varun and
Gehrmann, Sebastian and
Jernite, Yacine and
Novikova, Jekaterina and
Perez-Beltrachini, Laura",
booktitle = "Proceedings of the 2nd Workshop on Natural Language Generation, Evaluation, and Metrics (GEM)",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates (Hybrid)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.gem-1.31",
doi = "10.18653/v1/2022.gem-1.31",
pages = "363--382",
abstract = "Prefix-tuning is a parameter-efficient and powerful technique for adapting a pre-trained language model to a downstream application. However, it uses the same dataset-level tuned set of parameters for all examples in the dataset. We extend the framework with a dynamic method, Control Prefixes, which allows for the effective inclusion of input-dependent information, thereby demonstrating how prefix-tuning can be used for controlled text generation tasks. The method incorporates attribute-level learnable representations into different layers of a pre-trained Transformer, enabling the generated text to be guided in a particular direction. We provide a systematic evaluation of the technique and apply it to five datasets from the GEM benchmark for natural language generation (NLG). Using only 0.1{--}2{\%} additional trainable parameters, we show Control Prefixes can even outperform full fine-tuning methods, and present state-of-the-art results on several data-to-text datasets, including WebNLG. We also examine the common case where input-dependent information is unavailable at test time and show Control Prefixes can excel in this setting also.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="clive-etal-2022-control">
<titleInfo>
<title>Control Prefixes for Parameter-Efficient Text Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Clive</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kris</namePart>
<namePart type="family">Cao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marek</namePart>
<namePart type="family">Rei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2nd Workshop on Natural Language Generation, Evaluation, and Metrics (GEM)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Antoine</namePart>
<namePart type="family">Bosselut</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khyathi</namePart>
<namePart type="family">Chandu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kaustubh</namePart>
<namePart type="family">Dhole</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Varun</namePart>
<namePart type="family">Gangal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Gehrmann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yacine</namePart>
<namePart type="family">Jernite</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jekaterina</namePart>
<namePart type="family">Novikova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Laura</namePart>
<namePart type="family">Perez-Beltrachini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates (Hybrid)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Prefix-tuning is a parameter-efficient and powerful technique for adapting a pre-trained language model to a downstream application. However, it uses the same dataset-level tuned set of parameters for all examples in the dataset. We extend the framework with a dynamic method, Control Prefixes, which allows for the effective inclusion of input-dependent information, thereby demonstrating how prefix-tuning can be used for controlled text generation tasks. The method incorporates attribute-level learnable representations into different layers of a pre-trained Transformer, enabling the generated text to be guided in a particular direction. We provide a systematic evaluation of the technique and apply it to five datasets from the GEM benchmark for natural language generation (NLG). Using only 0.1–2% additional trainable parameters, we show Control Prefixes can even outperform full fine-tuning methods, and present state-of-the-art results on several data-to-text datasets, including WebNLG. We also examine the common case where input-dependent information is unavailable at test time and show Control Prefixes can excel in this setting also.</abstract>
<identifier type="citekey">clive-etal-2022-control</identifier>
<identifier type="doi">10.18653/v1/2022.gem-1.31</identifier>
<location>
<url>https://aclanthology.org/2022.gem-1.31</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>363</start>
<end>382</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Control Prefixes for Parameter-Efficient Text Generation
%A Clive, Jordan
%A Cao, Kris
%A Rei, Marek
%Y Bosselut, Antoine
%Y Chandu, Khyathi
%Y Dhole, Kaustubh
%Y Gangal, Varun
%Y Gehrmann, Sebastian
%Y Jernite, Yacine
%Y Novikova, Jekaterina
%Y Perez-Beltrachini, Laura
%S Proceedings of the 2nd Workshop on Natural Language Generation, Evaluation, and Metrics (GEM)
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates (Hybrid)
%F clive-etal-2022-control
%X Prefix-tuning is a parameter-efficient and powerful technique for adapting a pre-trained language model to a downstream application. However, it uses the same dataset-level tuned set of parameters for all examples in the dataset. We extend the framework with a dynamic method, Control Prefixes, which allows for the effective inclusion of input-dependent information, thereby demonstrating how prefix-tuning can be used for controlled text generation tasks. The method incorporates attribute-level learnable representations into different layers of a pre-trained Transformer, enabling the generated text to be guided in a particular direction. We provide a systematic evaluation of the technique and apply it to five datasets from the GEM benchmark for natural language generation (NLG). Using only 0.1–2% additional trainable parameters, we show Control Prefixes can even outperform full fine-tuning methods, and present state-of-the-art results on several data-to-text datasets, including WebNLG. We also examine the common case where input-dependent information is unavailable at test time and show Control Prefixes can excel in this setting also.
%R 10.18653/v1/2022.gem-1.31
%U https://aclanthology.org/2022.gem-1.31
%U https://doi.org/10.18653/v1/2022.gem-1.31
%P 363-382
Markdown (Informal)
[Control Prefixes for Parameter-Efficient Text Generation](https://aclanthology.org/2022.gem-1.31) (Clive et al., GEM 2022)
ACL
- Jordan Clive, Kris Cao, and Marek Rei. 2022. Control Prefixes for Parameter-Efficient Text Generation. In Proceedings of the 2nd Workshop on Natural Language Generation, Evaluation, and Metrics (GEM), pages 363–382, Abu Dhabi, United Arab Emirates (Hybrid). Association for Computational Linguistics.