@inproceedings{gaido-etal-2022-efficient,
title = "Efficient yet Competitive Speech Translation: {FBK}@{IWSLT}2022",
author = "Gaido, Marco and
Papi, Sara and
Fucci, Dennis and
Fiameni, Giuseppe and
Negri, Matteo and
Turchi, Marco",
editor = "Salesky, Elizabeth and
Federico, Marcello and
Costa-juss{\`a}, Marta",
booktitle = "Proceedings of the 19th International Conference on Spoken Language Translation (IWSLT 2022)",
month = may,
year = "2022",
address = "Dublin, Ireland (in-person and online)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.iwslt-1.13/",
doi = "10.18653/v1/2022.iwslt-1.13",
pages = "177--189",
abstract = "The primary goal of this FBK`s systems submission to the IWSLT 2022 offline and simultaneous speech translation tasks is to reduce model training costs without sacrificing translation quality. As such, we first question the need of ASR pre-training, showing that it is not essential to achieve competitive results. Second, we focus on data filtering, showing that a simple method that looks at the ratio between source and target characters yields a quality improvement of 1 BLEU. Third, we compare different methods to reduce the detrimental effect of the audio segmentation mismatch between training data manually segmented at sentence level and inference data that is automatically segmented. Towards the same goal of training cost reduction, we participate in the simultaneous task with the same model trained for offline ST. The effectiveness of our lightweight training strategy is shown by the high score obtained on the MuST-C en-de corpus (26.7 BLEU) and is confirmed in high-resource data conditions by a 1.6 BLEU improvement on the IWSLT2020 test set over last year`s winning system."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gaido-etal-2022-efficient">
<titleInfo>
<title>Efficient yet Competitive Speech Translation: FBK@IWSLT2022</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="family">Gaido</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Papi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dennis</namePart>
<namePart type="family">Fucci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giuseppe</namePart>
<namePart type="family">Fiameni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matteo</namePart>
<namePart type="family">Negri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="family">Turchi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th International Conference on Spoken Language Translation (IWSLT 2022)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Elizabeth</namePart>
<namePart type="family">Salesky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcello</namePart>
<namePart type="family">Federico</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marta</namePart>
<namePart type="family">Costa-jussà</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland (in-person and online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The primary goal of this FBK‘s systems submission to the IWSLT 2022 offline and simultaneous speech translation tasks is to reduce model training costs without sacrificing translation quality. As such, we first question the need of ASR pre-training, showing that it is not essential to achieve competitive results. Second, we focus on data filtering, showing that a simple method that looks at the ratio between source and target characters yields a quality improvement of 1 BLEU. Third, we compare different methods to reduce the detrimental effect of the audio segmentation mismatch between training data manually segmented at sentence level and inference data that is automatically segmented. Towards the same goal of training cost reduction, we participate in the simultaneous task with the same model trained for offline ST. The effectiveness of our lightweight training strategy is shown by the high score obtained on the MuST-C en-de corpus (26.7 BLEU) and is confirmed in high-resource data conditions by a 1.6 BLEU improvement on the IWSLT2020 test set over last year‘s winning system.</abstract>
<identifier type="citekey">gaido-etal-2022-efficient</identifier>
<identifier type="doi">10.18653/v1/2022.iwslt-1.13</identifier>
<location>
<url>https://aclanthology.org/2022.iwslt-1.13/</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>177</start>
<end>189</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Efficient yet Competitive Speech Translation: FBK@IWSLT2022
%A Gaido, Marco
%A Papi, Sara
%A Fucci, Dennis
%A Fiameni, Giuseppe
%A Negri, Matteo
%A Turchi, Marco
%Y Salesky, Elizabeth
%Y Federico, Marcello
%Y Costa-jussà, Marta
%S Proceedings of the 19th International Conference on Spoken Language Translation (IWSLT 2022)
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland (in-person and online)
%F gaido-etal-2022-efficient
%X The primary goal of this FBK‘s systems submission to the IWSLT 2022 offline and simultaneous speech translation tasks is to reduce model training costs without sacrificing translation quality. As such, we first question the need of ASR pre-training, showing that it is not essential to achieve competitive results. Second, we focus on data filtering, showing that a simple method that looks at the ratio between source and target characters yields a quality improvement of 1 BLEU. Third, we compare different methods to reduce the detrimental effect of the audio segmentation mismatch between training data manually segmented at sentence level and inference data that is automatically segmented. Towards the same goal of training cost reduction, we participate in the simultaneous task with the same model trained for offline ST. The effectiveness of our lightweight training strategy is shown by the high score obtained on the MuST-C en-de corpus (26.7 BLEU) and is confirmed in high-resource data conditions by a 1.6 BLEU improvement on the IWSLT2020 test set over last year‘s winning system.
%R 10.18653/v1/2022.iwslt-1.13
%U https://aclanthology.org/2022.iwslt-1.13/
%U https://doi.org/10.18653/v1/2022.iwslt-1.13
%P 177-189
Markdown (Informal)
[Efficient yet Competitive Speech Translation: FBK@IWSLT2022](https://aclanthology.org/2022.iwslt-1.13/) (Gaido et al., IWSLT 2022)
ACL
- Marco Gaido, Sara Papi, Dennis Fucci, Giuseppe Fiameni, Matteo Negri, and Marco Turchi. 2022. Efficient yet Competitive Speech Translation: FBK@IWSLT2022. In Proceedings of the 19th International Conference on Spoken Language Translation (IWSLT 2022), pages 177–189, Dublin, Ireland (in-person and online). Association for Computational Linguistics.