@inproceedings{mhaskar-bhattacharyya-2022-multiple,
title = "Multiple Pivot Languages and Strategic Decoder Initialization Helps Neural Machine Translation",
author = "Mhaskar, Shivam and
Bhattacharyya, Pushpak",
editor = "Ojha, Atul Kr. and
Liu, Chao-Hong and
Vylomova, Ekaterina and
Abbott, Jade and
Washington, Jonathan and
Oco, Nathaniel and
Pirinen, Tommi A and
Malykh, Valentin and
Logacheva, Varvara and
Zhao, Xiaobing",
booktitle = "Proceedings of the Fifth Workshop on Technologies for Machine Translation of Low-Resource Languages (LoResMT 2022)",
month = oct,
year = "2022",
address = "Gyeongju, Republic of Korea",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.loresmt-1.2/",
pages = "9--14",
abstract = "In machine translation, a pivot language can be used to assist the source to target translation model. In pivot-based transfer learning, the source to pivot and the pivot to target models are used to improve the performance of the source to target model. This technique works best when both source-pivot and pivot-target are high resource language pairs and the source-target is a low resource language pair. But in some cases, such as Indic languages, the pivot to target language pair is not a high resource one. To overcome this limitation, we use multiple related languages as pivot languages to assist the source to target model. We show that using multiple pivot languages gives 2.03 BLEU and 3.05 chrF score improvement over the baseline model. We show that strategic decoder initialization while performing pivot-based transfer learning with multiple pivot languages gives a 3.67 BLEU and 5.94 chrF score improvement over the baseline model."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mhaskar-bhattacharyya-2022-multiple">
<titleInfo>
<title>Multiple Pivot Languages and Strategic Decoder Initialization Helps Neural Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shivam</namePart>
<namePart type="family">Mhaskar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pushpak</namePart>
<namePart type="family">Bhattacharyya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fifth Workshop on Technologies for Machine Translation of Low-Resource Languages (LoResMT 2022)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Atul</namePart>
<namePart type="given">Kr.</namePart>
<namePart type="family">Ojha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chao-Hong</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Vylomova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jade</namePart>
<namePart type="family">Abbott</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">Washington</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathaniel</namePart>
<namePart type="family">Oco</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tommi</namePart>
<namePart type="given">A</namePart>
<namePart type="family">Pirinen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Valentin</namePart>
<namePart type="family">Malykh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Varvara</namePart>
<namePart type="family">Logacheva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaobing</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Gyeongju, Republic of Korea</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In machine translation, a pivot language can be used to assist the source to target translation model. In pivot-based transfer learning, the source to pivot and the pivot to target models are used to improve the performance of the source to target model. This technique works best when both source-pivot and pivot-target are high resource language pairs and the source-target is a low resource language pair. But in some cases, such as Indic languages, the pivot to target language pair is not a high resource one. To overcome this limitation, we use multiple related languages as pivot languages to assist the source to target model. We show that using multiple pivot languages gives 2.03 BLEU and 3.05 chrF score improvement over the baseline model. We show that strategic decoder initialization while performing pivot-based transfer learning with multiple pivot languages gives a 3.67 BLEU and 5.94 chrF score improvement over the baseline model.</abstract>
<identifier type="citekey">mhaskar-bhattacharyya-2022-multiple</identifier>
<location>
<url>https://aclanthology.org/2022.loresmt-1.2/</url>
</location>
<part>
<date>2022-10</date>
<extent unit="page">
<start>9</start>
<end>14</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multiple Pivot Languages and Strategic Decoder Initialization Helps Neural Machine Translation
%A Mhaskar, Shivam
%A Bhattacharyya, Pushpak
%Y Ojha, Atul Kr.
%Y Liu, Chao-Hong
%Y Vylomova, Ekaterina
%Y Abbott, Jade
%Y Washington, Jonathan
%Y Oco, Nathaniel
%Y Pirinen, Tommi A.
%Y Malykh, Valentin
%Y Logacheva, Varvara
%Y Zhao, Xiaobing
%S Proceedings of the Fifth Workshop on Technologies for Machine Translation of Low-Resource Languages (LoResMT 2022)
%D 2022
%8 October
%I Association for Computational Linguistics
%C Gyeongju, Republic of Korea
%F mhaskar-bhattacharyya-2022-multiple
%X In machine translation, a pivot language can be used to assist the source to target translation model. In pivot-based transfer learning, the source to pivot and the pivot to target models are used to improve the performance of the source to target model. This technique works best when both source-pivot and pivot-target are high resource language pairs and the source-target is a low resource language pair. But in some cases, such as Indic languages, the pivot to target language pair is not a high resource one. To overcome this limitation, we use multiple related languages as pivot languages to assist the source to target model. We show that using multiple pivot languages gives 2.03 BLEU and 3.05 chrF score improvement over the baseline model. We show that strategic decoder initialization while performing pivot-based transfer learning with multiple pivot languages gives a 3.67 BLEU and 5.94 chrF score improvement over the baseline model.
%U https://aclanthology.org/2022.loresmt-1.2/
%P 9-14
Markdown (Informal)
[Multiple Pivot Languages and Strategic Decoder Initialization Helps Neural Machine Translation](https://aclanthology.org/2022.loresmt-1.2/) (Mhaskar & Bhattacharyya, LoResMT 2022)
ACL