@inproceedings{bagherzadeh-bergler-2022-integration,
title = "Integration of Heterogeneous Knowledge Sources for Biomedical Text Processing",
author = "Bagherzadeh, Parsa and
Bergler, Sabine",
editor = "Lavelli, Alberto and
Holderness, Eben and
Jimeno Yepes, Antonio and
Minard, Anne-Lyse and
Pustejovsky, James and
Rinaldi, Fabio",
booktitle = "Proceedings of the 13th International Workshop on Health Text Mining and Information Analysis (LOUHI)",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates (Hybrid)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.louhi-1.25/",
doi = "10.18653/v1/2022.louhi-1.25",
pages = "229--238",
abstract = "Recently, research into bringing outside knowledge sources into current neural NLP models has been increasing. Most approaches that leverage external knowledge sources require laborious and non-trivial designs, as well as tailoring the system through intensive ablation of different knowledge sources, an effort that discourages users to use quality ontological resources. In this paper, we show that multiple large heterogeneous KSs can be easily integrated using a decoupled approach, allowing for an automatic ablation of irrelevant KSs, while keeping the overall parameter space tractable. We experiment with BERT and pre-trained graph embeddings, and show that they interoperate well without performance degradation, even when some do not contribute to the task."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bagherzadeh-bergler-2022-integration">
<titleInfo>
<title>Integration of Heterogeneous Knowledge Sources for Biomedical Text Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Parsa</namePart>
<namePart type="family">Bagherzadeh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sabine</namePart>
<namePart type="family">Bergler</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th International Workshop on Health Text Mining and Information Analysis (LOUHI)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alberto</namePart>
<namePart type="family">Lavelli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eben</namePart>
<namePart type="family">Holderness</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Antonio</namePart>
<namePart type="family">Jimeno Yepes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anne-Lyse</namePart>
<namePart type="family">Minard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">Pustejovsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fabio</namePart>
<namePart type="family">Rinaldi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates (Hybrid)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recently, research into bringing outside knowledge sources into current neural NLP models has been increasing. Most approaches that leverage external knowledge sources require laborious and non-trivial designs, as well as tailoring the system through intensive ablation of different knowledge sources, an effort that discourages users to use quality ontological resources. In this paper, we show that multiple large heterogeneous KSs can be easily integrated using a decoupled approach, allowing for an automatic ablation of irrelevant KSs, while keeping the overall parameter space tractable. We experiment with BERT and pre-trained graph embeddings, and show that they interoperate well without performance degradation, even when some do not contribute to the task.</abstract>
<identifier type="citekey">bagherzadeh-bergler-2022-integration</identifier>
<identifier type="doi">10.18653/v1/2022.louhi-1.25</identifier>
<location>
<url>https://aclanthology.org/2022.louhi-1.25/</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>229</start>
<end>238</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Integration of Heterogeneous Knowledge Sources for Biomedical Text Processing
%A Bagherzadeh, Parsa
%A Bergler, Sabine
%Y Lavelli, Alberto
%Y Holderness, Eben
%Y Jimeno Yepes, Antonio
%Y Minard, Anne-Lyse
%Y Pustejovsky, James
%Y Rinaldi, Fabio
%S Proceedings of the 13th International Workshop on Health Text Mining and Information Analysis (LOUHI)
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates (Hybrid)
%F bagherzadeh-bergler-2022-integration
%X Recently, research into bringing outside knowledge sources into current neural NLP models has been increasing. Most approaches that leverage external knowledge sources require laborious and non-trivial designs, as well as tailoring the system through intensive ablation of different knowledge sources, an effort that discourages users to use quality ontological resources. In this paper, we show that multiple large heterogeneous KSs can be easily integrated using a decoupled approach, allowing for an automatic ablation of irrelevant KSs, while keeping the overall parameter space tractable. We experiment with BERT and pre-trained graph embeddings, and show that they interoperate well without performance degradation, even when some do not contribute to the task.
%R 10.18653/v1/2022.louhi-1.25
%U https://aclanthology.org/2022.louhi-1.25/
%U https://doi.org/10.18653/v1/2022.louhi-1.25
%P 229-238
Markdown (Informal)
[Integration of Heterogeneous Knowledge Sources for Biomedical Text Processing](https://aclanthology.org/2022.louhi-1.25/) (Bagherzadeh & Bergler, Louhi 2022)
ACL