@inproceedings{cobeli-etal-2022-detecting,
title = "Detecting Optimism in Tweets using Knowledge Distillation and Linguistic Analysis of Optimism",
author = "Cobeli, Ștefan and
Iordache, Ioan-Bogdan and
Yadav, Shweta and
Caragea, Cornelia and
Dinu, Liviu P. and
Iliescu, Dragoș",
editor = "Calzolari, Nicoletta and
B{\'e}chet, Fr{\'e}d{\'e}ric and
Blache, Philippe and
Choukri, Khalid and
Cieri, Christopher and
Declerck, Thierry and
Goggi, Sara and
Isahara, Hitoshi and
Maegaard, Bente and
Mariani, Joseph and
Mazo, H{\'e}l{\`e}ne and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference",
month = jun,
year = "2022",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2022.lrec-1.218/",
pages = "2032--2041",
abstract = "Finding the polarity of feelings in texts is a far-reaching task. Whilst the field of natural language processing has established sentiment analysis as an alluring problem, many feelings are left uncharted. In this study, we analyze the optimism and pessimism concepts from Twitter posts to effectively understand the broader dimension of psychological phenomenon. Towards this, we carried a systematic study by first exploring the linguistic peculiarities of optimism and pessimism in user-generated content. Later, we devised a multi-task knowledge distillation framework to simultaneously learn the target task of optimism detection with the help of the auxiliary task of sentiment analysis and hate speech detection. We evaluated the performance of our proposed approach on the benchmark Optimism/Pessimism Twitter dataset. Our extensive experiments show the superior- ity of our approach in correctly differentiating between optimistic and pessimistic users. Our human and automatic evaluation shows that sentiment analysis and hate speech detection are beneficial for optimism/pessimism detection."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="cobeli-etal-2022-detecting">
<titleInfo>
<title>Detecting Optimism in Tweets using Knowledge Distillation and Linguistic Analysis of Optimism</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ștefan</namePart>
<namePart type="family">Cobeli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ioan-Bogdan</namePart>
<namePart type="family">Iordache</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shweta</namePart>
<namePart type="family">Yadav</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cornelia</namePart>
<namePart type="family">Caragea</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liviu</namePart>
<namePart type="given">P</namePart>
<namePart type="family">Dinu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dragoș</namePart>
<namePart type="family">Iliescu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Thirteenth Language Resources and Evaluation Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frédéric</namePart>
<namePart type="family">Béchet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philippe</namePart>
<namePart type="family">Blache</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Cieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hitoshi</namePart>
<namePart type="family">Isahara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hélène</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Finding the polarity of feelings in texts is a far-reaching task. Whilst the field of natural language processing has established sentiment analysis as an alluring problem, many feelings are left uncharted. In this study, we analyze the optimism and pessimism concepts from Twitter posts to effectively understand the broader dimension of psychological phenomenon. Towards this, we carried a systematic study by first exploring the linguistic peculiarities of optimism and pessimism in user-generated content. Later, we devised a multi-task knowledge distillation framework to simultaneously learn the target task of optimism detection with the help of the auxiliary task of sentiment analysis and hate speech detection. We evaluated the performance of our proposed approach on the benchmark Optimism/Pessimism Twitter dataset. Our extensive experiments show the superior- ity of our approach in correctly differentiating between optimistic and pessimistic users. Our human and automatic evaluation shows that sentiment analysis and hate speech detection are beneficial for optimism/pessimism detection.</abstract>
<identifier type="citekey">cobeli-etal-2022-detecting</identifier>
<location>
<url>https://aclanthology.org/2022.lrec-1.218/</url>
</location>
<part>
<date>2022-06</date>
<extent unit="page">
<start>2032</start>
<end>2041</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Detecting Optimism in Tweets using Knowledge Distillation and Linguistic Analysis of Optimism
%A Cobeli, Ștefan
%A Iordache, Ioan-Bogdan
%A Yadav, Shweta
%A Caragea, Cornelia
%A Dinu, Liviu P.
%A Iliescu, Dragoș
%Y Calzolari, Nicoletta
%Y Béchet, Frédéric
%Y Blache, Philippe
%Y Choukri, Khalid
%Y Cieri, Christopher
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Isahara, Hitoshi
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Hélène
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Thirteenth Language Resources and Evaluation Conference
%D 2022
%8 June
%I European Language Resources Association
%C Marseille, France
%F cobeli-etal-2022-detecting
%X Finding the polarity of feelings in texts is a far-reaching task. Whilst the field of natural language processing has established sentiment analysis as an alluring problem, many feelings are left uncharted. In this study, we analyze the optimism and pessimism concepts from Twitter posts to effectively understand the broader dimension of psychological phenomenon. Towards this, we carried a systematic study by first exploring the linguistic peculiarities of optimism and pessimism in user-generated content. Later, we devised a multi-task knowledge distillation framework to simultaneously learn the target task of optimism detection with the help of the auxiliary task of sentiment analysis and hate speech detection. We evaluated the performance of our proposed approach on the benchmark Optimism/Pessimism Twitter dataset. Our extensive experiments show the superior- ity of our approach in correctly differentiating between optimistic and pessimistic users. Our human and automatic evaluation shows that sentiment analysis and hate speech detection are beneficial for optimism/pessimism detection.
%U https://aclanthology.org/2022.lrec-1.218/
%P 2032-2041
Markdown (Informal)
[Detecting Optimism in Tweets using Knowledge Distillation and Linguistic Analysis of Optimism](https://aclanthology.org/2022.lrec-1.218/) (Cobeli et al., LREC 2022)
ACL