@inproceedings{sakketou-etal-2022-investigating,
title = "Investigating User Radicalization: A Novel Dataset for Identifying Fine-Grained Temporal Shifts in Opinion",
author = "Sakketou, Flora and
Lahnala, Allison and
Vogel, Liane and
Flek, Lucie",
editor = "Calzolari, Nicoletta and
B{\'e}chet, Fr{\'e}d{\'e}ric and
Blache, Philippe and
Choukri, Khalid and
Cieri, Christopher and
Declerck, Thierry and
Goggi, Sara and
Isahara, Hitoshi and
Maegaard, Bente and
Mariani, Joseph and
Mazo, H{\'e}l{\`e}ne and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference",
month = jun,
year = "2022",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2022.lrec-1.405",
pages = "3798--3808",
abstract = "There is an increasing need for the ability to model fine-grained opinion shifts of social media users, as concerns about the potential polarizing social effects increase. However, the lack of publicly available datasets that are suitable for the task presents a major challenge. In this paper, we introduce an innovative annotated dataset for modeling subtle opinion fluctuations and detecting fine-grained stances. The dataset includes a sufficient amount of stance polarity and intensity labels per user over time and within entire conversational threads, thus making subtle opinion fluctuations detectable both in long term and in short term. All posts are annotated by non-experts and a significant portion of the data is also annotated by experts. We provide a strategy for recruiting suitable non-experts. Our analysis of the inter-annotator agreements shows that the resulting annotations obtained from the majority vote of the non-experts are of comparable quality to the annotations of the experts. We provide analyses of the stance evolution in short term and long term levels, a comparison of language usage between users with vacillating and resolute attitudes, and fine-grained stance detection baselines.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sakketou-etal-2022-investigating">
<titleInfo>
<title>Investigating User Radicalization: A Novel Dataset for Identifying Fine-Grained Temporal Shifts in Opinion</title>
</titleInfo>
<name type="personal">
<namePart type="given">Flora</namePart>
<namePart type="family">Sakketou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Allison</namePart>
<namePart type="family">Lahnala</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liane</namePart>
<namePart type="family">Vogel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucie</namePart>
<namePart type="family">Flek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Thirteenth Language Resources and Evaluation Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frédéric</namePart>
<namePart type="family">Béchet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philippe</namePart>
<namePart type="family">Blache</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Cieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hitoshi</namePart>
<namePart type="family">Isahara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hélène</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>There is an increasing need for the ability to model fine-grained opinion shifts of social media users, as concerns about the potential polarizing social effects increase. However, the lack of publicly available datasets that are suitable for the task presents a major challenge. In this paper, we introduce an innovative annotated dataset for modeling subtle opinion fluctuations and detecting fine-grained stances. The dataset includes a sufficient amount of stance polarity and intensity labels per user over time and within entire conversational threads, thus making subtle opinion fluctuations detectable both in long term and in short term. All posts are annotated by non-experts and a significant portion of the data is also annotated by experts. We provide a strategy for recruiting suitable non-experts. Our analysis of the inter-annotator agreements shows that the resulting annotations obtained from the majority vote of the non-experts are of comparable quality to the annotations of the experts. We provide analyses of the stance evolution in short term and long term levels, a comparison of language usage between users with vacillating and resolute attitudes, and fine-grained stance detection baselines.</abstract>
<identifier type="citekey">sakketou-etal-2022-investigating</identifier>
<location>
<url>https://aclanthology.org/2022.lrec-1.405</url>
</location>
<part>
<date>2022-06</date>
<extent unit="page">
<start>3798</start>
<end>3808</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Investigating User Radicalization: A Novel Dataset for Identifying Fine-Grained Temporal Shifts in Opinion
%A Sakketou, Flora
%A Lahnala, Allison
%A Vogel, Liane
%A Flek, Lucie
%Y Calzolari, Nicoletta
%Y Béchet, Frédéric
%Y Blache, Philippe
%Y Choukri, Khalid
%Y Cieri, Christopher
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Isahara, Hitoshi
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Hélène
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Thirteenth Language Resources and Evaluation Conference
%D 2022
%8 June
%I European Language Resources Association
%C Marseille, France
%F sakketou-etal-2022-investigating
%X There is an increasing need for the ability to model fine-grained opinion shifts of social media users, as concerns about the potential polarizing social effects increase. However, the lack of publicly available datasets that are suitable for the task presents a major challenge. In this paper, we introduce an innovative annotated dataset for modeling subtle opinion fluctuations and detecting fine-grained stances. The dataset includes a sufficient amount of stance polarity and intensity labels per user over time and within entire conversational threads, thus making subtle opinion fluctuations detectable both in long term and in short term. All posts are annotated by non-experts and a significant portion of the data is also annotated by experts. We provide a strategy for recruiting suitable non-experts. Our analysis of the inter-annotator agreements shows that the resulting annotations obtained from the majority vote of the non-experts are of comparable quality to the annotations of the experts. We provide analyses of the stance evolution in short term and long term levels, a comparison of language usage between users with vacillating and resolute attitudes, and fine-grained stance detection baselines.
%U https://aclanthology.org/2022.lrec-1.405
%P 3798-3808
Markdown (Informal)
[Investigating User Radicalization: A Novel Dataset for Identifying Fine-Grained Temporal Shifts in Opinion](https://aclanthology.org/2022.lrec-1.405) (Sakketou et al., LREC 2022)
ACL