@inproceedings{canete-etal-2022-albeto,
title = "{ALBETO} and {D}istil{BETO}: Lightweight {S}panish Language Models",
author = "Ca{\~n}ete, Jos{\'e} and
Donoso, Sebastian and
Bravo-Marquez, Felipe and
Carvallo, Andr{\'e}s and
Araujo, Vladimir",
editor = "Calzolari, Nicoletta and
B{\'e}chet, Fr{\'e}d{\'e}ric and
Blache, Philippe and
Choukri, Khalid and
Cieri, Christopher and
Declerck, Thierry and
Goggi, Sara and
Isahara, Hitoshi and
Maegaard, Bente and
Mariani, Joseph and
Mazo, H{\'e}l{\`e}ne and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference",
month = jun,
year = "2022",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2022.lrec-1.457",
pages = "4291--4298",
abstract = "In recent years there have been considerable advances in pre-trained language models, where non-English language versions have also been made available. Due to their increasing use, many lightweight versions of these models (with reduced parameters) have also been released to speed up training and inference times. However, versions of these lighter models (e.g., ALBERT, DistilBERT) for languages other than English are still scarce. In this paper we present ALBETO and DistilBETO, which are versions of ALBERT and DistilBERT pre-trained exclusively on Spanish corpora. We train several versions of ALBETO ranging from 5M to 223M parameters and one of DistilBETO with 67M parameters. We evaluate our models in the GLUES benchmark that includes various natural language understanding tasks in Spanish. The results show that our lightweight models achieve competitive results to those of BETO (Spanish-BERT) despite having fewer parameters. More specifically, our larger ALBETO model outperforms all other models on the MLDoc, PAWS-X, XNLI, MLQA, SQAC and XQuAD datasets. However, BETO remains unbeaten for POS and NER. As a further contribution, all models are publicly available to the community for future research.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="canete-etal-2022-albeto">
<titleInfo>
<title>ALBETO and DistilBETO: Lightweight Spanish Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">José</namePart>
<namePart type="family">Cañete</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Donoso</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Felipe</namePart>
<namePart type="family">Bravo-Marquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrés</namePart>
<namePart type="family">Carvallo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vladimir</namePart>
<namePart type="family">Araujo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Thirteenth Language Resources and Evaluation Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frédéric</namePart>
<namePart type="family">Béchet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philippe</namePart>
<namePart type="family">Blache</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Cieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hitoshi</namePart>
<namePart type="family">Isahara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hélène</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In recent years there have been considerable advances in pre-trained language models, where non-English language versions have also been made available. Due to their increasing use, many lightweight versions of these models (with reduced parameters) have also been released to speed up training and inference times. However, versions of these lighter models (e.g., ALBERT, DistilBERT) for languages other than English are still scarce. In this paper we present ALBETO and DistilBETO, which are versions of ALBERT and DistilBERT pre-trained exclusively on Spanish corpora. We train several versions of ALBETO ranging from 5M to 223M parameters and one of DistilBETO with 67M parameters. We evaluate our models in the GLUES benchmark that includes various natural language understanding tasks in Spanish. The results show that our lightweight models achieve competitive results to those of BETO (Spanish-BERT) despite having fewer parameters. More specifically, our larger ALBETO model outperforms all other models on the MLDoc, PAWS-X, XNLI, MLQA, SQAC and XQuAD datasets. However, BETO remains unbeaten for POS and NER. As a further contribution, all models are publicly available to the community for future research.</abstract>
<identifier type="citekey">canete-etal-2022-albeto</identifier>
<location>
<url>https://aclanthology.org/2022.lrec-1.457</url>
</location>
<part>
<date>2022-06</date>
<extent unit="page">
<start>4291</start>
<end>4298</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ALBETO and DistilBETO: Lightweight Spanish Language Models
%A Cañete, José
%A Donoso, Sebastian
%A Bravo-Marquez, Felipe
%A Carvallo, Andrés
%A Araujo, Vladimir
%Y Calzolari, Nicoletta
%Y Béchet, Frédéric
%Y Blache, Philippe
%Y Choukri, Khalid
%Y Cieri, Christopher
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Isahara, Hitoshi
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Hélène
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Thirteenth Language Resources and Evaluation Conference
%D 2022
%8 June
%I European Language Resources Association
%C Marseille, France
%F canete-etal-2022-albeto
%X In recent years there have been considerable advances in pre-trained language models, where non-English language versions have also been made available. Due to their increasing use, many lightweight versions of these models (with reduced parameters) have also been released to speed up training and inference times. However, versions of these lighter models (e.g., ALBERT, DistilBERT) for languages other than English are still scarce. In this paper we present ALBETO and DistilBETO, which are versions of ALBERT and DistilBERT pre-trained exclusively on Spanish corpora. We train several versions of ALBETO ranging from 5M to 223M parameters and one of DistilBETO with 67M parameters. We evaluate our models in the GLUES benchmark that includes various natural language understanding tasks in Spanish. The results show that our lightweight models achieve competitive results to those of BETO (Spanish-BERT) despite having fewer parameters. More specifically, our larger ALBETO model outperforms all other models on the MLDoc, PAWS-X, XNLI, MLQA, SQAC and XQuAD datasets. However, BETO remains unbeaten for POS and NER. As a further contribution, all models are publicly available to the community for future research.
%U https://aclanthology.org/2022.lrec-1.457
%P 4291-4298
Markdown (Informal)
[ALBETO and DistilBETO: Lightweight Spanish Language Models](https://aclanthology.org/2022.lrec-1.457) (Cañete et al., LREC 2022)
ACL
- José Cañete, Sebastian Donoso, Felipe Bravo-Marquez, Andrés Carvallo, and Vladimir Araujo. 2022. ALBETO and DistilBETO: Lightweight Spanish Language Models. In Proceedings of the Thirteenth Language Resources and Evaluation Conference, pages 4291–4298, Marseille, France. European Language Resources Association.