@inproceedings{qin-etal-2022-complementary,
title = "Complementary Learning of Aspect Terms for Aspect-based Sentiment Analysis",
author = "Qin, Han and
Tian, Yuanhe and
Xia, Fei and
Song, Yan",
editor = "Calzolari, Nicoletta and
B{\'e}chet, Fr{\'e}d{\'e}ric and
Blache, Philippe and
Choukri, Khalid and
Cieri, Christopher and
Declerck, Thierry and
Goggi, Sara and
Isahara, Hitoshi and
Maegaard, Bente and
Mariani, Joseph and
Mazo, H{\'e}l{\`e}ne and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference",
month = jun,
year = "2022",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2022.lrec-1.760/",
pages = "7029--7039",
abstract = "Aspect-based sentiment analysis (ABSA) aims to predict the sentiment polarity towards a given aspect term in a sentence on the fine-grained level, which usually requires a good understanding of contextual information, especially appropriately distinguishing of a given aspect and its contexts, to achieve good performance. However, most existing ABSA models pay limited attention to the modeling of the given aspect terms and thus result in inferior results when a sentence contains multiple aspect terms with contradictory sentiment polarities. In this paper, we propose to improve ABSA by complementary learning of aspect terms, which serves as a supportive auxiliary task to enhance ABSA by explicitly recovering the aspect terms from each input sentence so as to better understand aspects and their contexts. Particularly, a discriminator is also introduced to further improve the learning process by appropriately balancing the impact of aspect recovery to sentiment prediction. Experimental results on five widely used English benchmark datasets for ABSA demonstrate the effectiveness of our approach, where state-of-the-art performance is observed on all datasets."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="qin-etal-2022-complementary">
<titleInfo>
<title>Complementary Learning of Aspect Terms for Aspect-based Sentiment Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Han</namePart>
<namePart type="family">Qin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuanhe</namePart>
<namePart type="family">Tian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fei</namePart>
<namePart type="family">Xia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yan</namePart>
<namePart type="family">Song</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Thirteenth Language Resources and Evaluation Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frédéric</namePart>
<namePart type="family">Béchet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philippe</namePart>
<namePart type="family">Blache</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Cieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hitoshi</namePart>
<namePart type="family">Isahara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hélène</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Aspect-based sentiment analysis (ABSA) aims to predict the sentiment polarity towards a given aspect term in a sentence on the fine-grained level, which usually requires a good understanding of contextual information, especially appropriately distinguishing of a given aspect and its contexts, to achieve good performance. However, most existing ABSA models pay limited attention to the modeling of the given aspect terms and thus result in inferior results when a sentence contains multiple aspect terms with contradictory sentiment polarities. In this paper, we propose to improve ABSA by complementary learning of aspect terms, which serves as a supportive auxiliary task to enhance ABSA by explicitly recovering the aspect terms from each input sentence so as to better understand aspects and their contexts. Particularly, a discriminator is also introduced to further improve the learning process by appropriately balancing the impact of aspect recovery to sentiment prediction. Experimental results on five widely used English benchmark datasets for ABSA demonstrate the effectiveness of our approach, where state-of-the-art performance is observed on all datasets.</abstract>
<identifier type="citekey">qin-etal-2022-complementary</identifier>
<location>
<url>https://aclanthology.org/2022.lrec-1.760/</url>
</location>
<part>
<date>2022-06</date>
<extent unit="page">
<start>7029</start>
<end>7039</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Complementary Learning of Aspect Terms for Aspect-based Sentiment Analysis
%A Qin, Han
%A Tian, Yuanhe
%A Xia, Fei
%A Song, Yan
%Y Calzolari, Nicoletta
%Y Béchet, Frédéric
%Y Blache, Philippe
%Y Choukri, Khalid
%Y Cieri, Christopher
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Isahara, Hitoshi
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Hélène
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Thirteenth Language Resources and Evaluation Conference
%D 2022
%8 June
%I European Language Resources Association
%C Marseille, France
%F qin-etal-2022-complementary
%X Aspect-based sentiment analysis (ABSA) aims to predict the sentiment polarity towards a given aspect term in a sentence on the fine-grained level, which usually requires a good understanding of contextual information, especially appropriately distinguishing of a given aspect and its contexts, to achieve good performance. However, most existing ABSA models pay limited attention to the modeling of the given aspect terms and thus result in inferior results when a sentence contains multiple aspect terms with contradictory sentiment polarities. In this paper, we propose to improve ABSA by complementary learning of aspect terms, which serves as a supportive auxiliary task to enhance ABSA by explicitly recovering the aspect terms from each input sentence so as to better understand aspects and their contexts. Particularly, a discriminator is also introduced to further improve the learning process by appropriately balancing the impact of aspect recovery to sentiment prediction. Experimental results on five widely used English benchmark datasets for ABSA demonstrate the effectiveness of our approach, where state-of-the-art performance is observed on all datasets.
%U https://aclanthology.org/2022.lrec-1.760/
%P 7029-7039
Markdown (Informal)
[Complementary Learning of Aspect Terms for Aspect-based Sentiment Analysis](https://aclanthology.org/2022.lrec-1.760/) (Qin et al., LREC 2022)
ACL