@inproceedings{pillar-etal-2022-regex,
title = "Regex in a Time of Deep Learning: The Role of an Old Technology in Age Discrimination Detection in Job Advertisements",
author = "Pillar, Anna and
Poelmans, Kyrill and
Larson, Martha",
editor = "Chakravarthi, Bharathi Raja and
Bharathi, B and
McCrae, John P and
Zarrouk, Manel and
Bali, Kalika and
Buitelaar, Paul",
booktitle = "Proceedings of the Second Workshop on Language Technology for Equality, Diversity and Inclusion",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.ltedi-1.2/",
doi = "10.18653/v1/2022.ltedi-1.2",
pages = "13--18",
abstract = "Deep learning holds great promise for detecting discriminatory language in the public sphere. However, for the detection of illegal age discrimination in job advertisements, regex approaches are still strong performers. In this paper, we investigate job advertisements in the Netherlands. We present a qualitative analysis of the benefits of the {\textquoteleft}old' approach based on regexes and investigate how neural embeddings could address its limitations."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pillar-etal-2022-regex">
<titleInfo>
<title>Regex in a Time of Deep Learning: The Role of an Old Technology in Age Discrimination Detection in Job Advertisements</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Pillar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kyrill</namePart>
<namePart type="family">Poelmans</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martha</namePart>
<namePart type="family">Larson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Second Workshop on Language Technology for Equality, Diversity and Inclusion</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bharathi</namePart>
<namePart type="given">Raja</namePart>
<namePart type="family">Chakravarthi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">B</namePart>
<namePart type="family">Bharathi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">John</namePart>
<namePart type="given">P</namePart>
<namePart type="family">McCrae</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manel</namePart>
<namePart type="family">Zarrouk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paul</namePart>
<namePart type="family">Buitelaar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Deep learning holds great promise for detecting discriminatory language in the public sphere. However, for the detection of illegal age discrimination in job advertisements, regex approaches are still strong performers. In this paper, we investigate job advertisements in the Netherlands. We present a qualitative analysis of the benefits of the ‘old’ approach based on regexes and investigate how neural embeddings could address its limitations.</abstract>
<identifier type="citekey">pillar-etal-2022-regex</identifier>
<identifier type="doi">10.18653/v1/2022.ltedi-1.2</identifier>
<location>
<url>https://aclanthology.org/2022.ltedi-1.2/</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>13</start>
<end>18</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Regex in a Time of Deep Learning: The Role of an Old Technology in Age Discrimination Detection in Job Advertisements
%A Pillar, Anna
%A Poelmans, Kyrill
%A Larson, Martha
%Y Chakravarthi, Bharathi Raja
%Y Bharathi, B.
%Y McCrae, John P.
%Y Zarrouk, Manel
%Y Bali, Kalika
%Y Buitelaar, Paul
%S Proceedings of the Second Workshop on Language Technology for Equality, Diversity and Inclusion
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F pillar-etal-2022-regex
%X Deep learning holds great promise for detecting discriminatory language in the public sphere. However, for the detection of illegal age discrimination in job advertisements, regex approaches are still strong performers. In this paper, we investigate job advertisements in the Netherlands. We present a qualitative analysis of the benefits of the ‘old’ approach based on regexes and investigate how neural embeddings could address its limitations.
%R 10.18653/v1/2022.ltedi-1.2
%U https://aclanthology.org/2022.ltedi-1.2/
%U https://doi.org/10.18653/v1/2022.ltedi-1.2
%P 13-18
Markdown (Informal)
[Regex in a Time of Deep Learning: The Role of an Old Technology in Age Discrimination Detection in Job Advertisements](https://aclanthology.org/2022.ltedi-1.2/) (Pillar et al., LTEDI 2022)
ACL